我们知道,荧光的发光是被一定波长光激发后,电子被激发到高能级,随后向低能级跃迁的过程中发出比激发光波长更长的荧光,这也就是上面提到的受激辐射。我们将能接受光辐射,并跃迁发出颜色光的基团叫做生色团。绿色荧光蛋白含有一个三肽的单位Ser(65)-Tyr(66)-Gly(67),在蛋白质折叠的时候,这三个氨基酸会折叠成5元环的咪唑酮的结构,也就是生色团。当它被激发后,失去一个质子,形成了带负电荷的结构,在这种构象下就可以发光了。
激光的原理之一——受激辐射。受激辐射指的是如下过:处于激发态的原子,在其发生自发辐射前,若受到某一外来光子的作用,而且外来光子的能量恰好满足hv=E2-E1,原子就有可能从激发态E2,跃迁至低能态E1,同时放出一个与外来光子具有完全相同状态的光子。 可是蓝色和绿色显然是两种波长。至于荧光呢……是这样:有些物质在收到光照后,在撤去外光源后在一定时间内仍然会持续发光。 物质所发荧光的波长总是大于激发光的波长(恰好就是蓝光激发绿萤光哦)。分子被一次性激发到高能态后,再慢慢向下方能级逐渐跃迁、发光。它蛋白质序列里的Ser65–Tyr66–Gly67构成了无需催化的发光分子。使用时一般用光线激发,395nm和475nm是两个最大激发波长,发射波长在509nm。不同的GFP发光的生色团不太一样吧 最明显的是它们的激发和发射光的波长都不同,不过原理都应该是上边说的荧光。
绿色荧光蛋白最早是由下村修等人在1962年在一种学名Aequorea victoria的水母中发现。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色荧光。这个发光的过程中还需要冷光蛋白质Aequorin的帮助,且这个冷光蛋白质与钙离子(Ca2+)可产生交互作用。2015年9月,科学家将一种绿色荧光蛋白注入小鸡体内,使其在实验中更容易与其他鸟类区分开来。而且每只小鸡都进行了基因改造,通过追踪一个名为“decoy”的基因,科学家可以观察它们对禽流感病毒的易感程度。
由水母Aequorea victoria中发现的野生型绿色荧光蛋白 科学家在线形虫体内植入绿色荧光蛋白质 ,395nm和475nm分别是最大和次大的激发波长,它的发射波长的峰点是在509nm,在可见光绿光的范围下是较弱的位置。由海肾(sea pansy)所得的绿色荧光蛋白,仅有在498nm有一个较高的激发峰点。 在细胞生物学与分子生物学领域中,绿色荧光蛋白基因常被用作为一个报告基因(reporter gene)。一些经修饰过的型式可作为生物探针,绿色荧光蛋白基因也可以克隆到脊椎动物(例如:兔子上进行表现,并拿来映证某种假设的实验方法。