用分部积分解决
∫ arctanx dx
=xarctanx-∫ x d(arctanx)
=xarctanx-∫ x /(1+x^2) dx
=xarctanx-(1/2) ∫ 1/(1+x^2) d(1+x^2)
=xarctanx-(1/2)ln(1+x^2)+C
扩展资料:
在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′ =f。
分部积分法
不定积分设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu
两边积分,得分部积分公式
∫udv=uv-∫vdu。
称公式为分部积分公式.如果积分∫vdu易于求出,则左端积分式随之得到.
分部积分公式运用成败的关键是恰当地选择u,v
一般来说,u,v选取的原则是:
1、积分容易者选为v, 2、求导简单者选为u。
例子:∫Inx dx中应设U=Inx,V=x
分部积分法的实质是:将所求积分化为两个积分之差,积分容易者先积分。实际上是两次积分。
有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和.可见问题转化为计算真分式的积分.
可以证明,任何真分式总能分解为部分分式之和。
参考资料:百度百科-不定积分
如图ᥬ😂᭄
简单分析一下,详情如图所示
∫arctanx dx
=xarctanx-∫x darctanx
=xarctanx-∫x/(1+x²) dx
=xarctanx-(1/2)*∫d(1+x²)/(1+x²)
=xarctanx-(1/2)*ln(1+x²)+C