已知tan(π⼀4+a)=1⼀2则sin2a-cos2a=多少

2024-11-23 08:01:09
推荐回答(1个)
回答1:

解:由已知tan(π/4
+
a)
=
[tan(π/4)
+
tana]/[1

tan(π/4)tana]
=
(1
+
tana)/(1

tana)
=
1/2,去分母得2(1
+
tana)
=
1

tana,展开可得2
+
2tana
=
1

tana,移项得3tana
=
-1,所以tana
=
-1/3

原式
=
sin2a

cos2a
=
2sinacosa

(cos
2
a

sin
2
a)
=
sin
2
a
+
2sinacosa

cos
2
a
=
(sin
2
a
+
2sinacosa

cos
2
a)/(sin
2
a
+
cos
2
a)
=
(tan
2
a
+
2tana

1)/(tan
2
a
+
1)
=
[(-1/3)
2
+
2*(-1/3)

1]/[(-1/3)
2
+
1]
=
(1/9

2/3

1)/(1/9
+
1)
=
(1

6

9)/(1
+
9)
=
-14/10
=
-7/5

综上所述,sin2a

cos2a
=
-7/5