用分部积分法求 ∫(arcsinx)2dx

用分部积分法求 ∫(arcsinx)2dx , 要步骤。(arcsinx)2 为arcsinx 的平方
2024-11-19 03:40:53
推荐回答(3个)
回答1:

分部积分法:∫udv=uv-∫vdu
所以 ∫(arcsinx)²dx
=x(arcsinx)²-∫xd(arcsinx)²
= x(arcsinx)²-∫x*[2*arcsinx*1/√(1-x²)]dx //对(arcsinx)²求导
=x(arcsinx)²+∫arcsinx*1/√(1-x²)d(1-x²)
= x(arcsinx)² +2∫arcsinxd√(1-x²)
= x(arcsinx)² +2arcsinx*√(1-x²)-2∫√(1-x²)darcsinx
= x(arcsinx)² +2arcsinx*√(1-x²)-2∫√(1-x²)*1/√(1-x²)dx
= x(arcsinx)² +2arcsinx*√(1-x²)-2∫dx
= x(arcsinx)² +2arcsinx*√(1-x²)-2x+C

回答2:

令t=arcsinx 则x=sint, dx=costdt,cost=√1-x²,

原式=∫t²costdt
=t²sint-∫2tsintdt 分部积分法
=t²sint 2∫tdcost
=t²sint 2tcost-2∫costdt 分部积分法
=t²sint 2tcost-2sint c
=x(arcsinx)² 2arcsinx(√1-x²)-2x c(最后一步是将x=sint,√1-x²=cost代入得到的)

回答3:

∫(arcsinx)2dx
= x(arcsinx)² - ∫xd(arcsinx)²
= x(arcsinx)² - ∫2xarcsinx*1/√(1-x²)dx
= x(arcsinx)² +∫arcsinx*1/√(1-x²)d(1-x²)
= x(arcsinx)² +2∫arcsinx*1/2√(1-x²)d(1-x²)
= x(arcsinx)² +2∫arcsinxd√(1-x²)
= x(arcsinx)² +2arcsinx*√(1-x²)-2∫√(1-x²)darcsinx
= x(arcsinx)² +2arcsinx*√(1-x²)-2∫√(1-x²)*1/√(1-x²)dx
= x(arcsinx)² +2arcsinx*√(1-x²)-2∫dx
= x(arcsinx)² +2arcsinx*√(1-x²)-2x+C