已知:关于x的一元二次方程kx2-(4k+1)x+3k+3=0 (k是整数).(1)求证:此方程一定有两个不相等的实数

2024-10-28 19:05:57
推荐回答(1个)
回答1:

(1)∵△=[-(4k+1)]2-4k(3k+3)=4(k-

1
2
2
∵k是整数,
∴4(k-
1
2
2>0,
∴此方程一定有两个不相等的实数根;
关于x的一元二次方程kx2-(4k+1)x+3k+3=0 (k是整数).

(2)∵由(1)知,△=4(k-
1
2
2
∴x=
4k+1±2|k?
1
2
|
2k
,即x1=
4k+1+2|k?
1
2
|
2k
,x2=
4k+1?2|k?
1
2
|
2k