拓扑空间的分类介绍

2025-01-05 06:17:28
推荐回答(1个)
回答1:

欧几里得空间的一种推广。给定任意一个集,在它的每一点赋予一种确定的邻近结构便成为一个拓扑空间。构造邻近结构有多种方法,常用的是指定开集的方法。给定集x,它的一个子集族J称为x上的一个拓扑结构,简称拓扑,是指J满足下列三个条件:①空集和x本身是J的元;
②J内任意有限多个元的交仍是J的元;
③J内任意多个元的并仍是J的元。
集x连同它上面的一个拓扑J,构成一个拓扑空间,简称空间。J的元叫x的开集,开集的补集叫闭集。任何集x上总可以赋予拓扑。例如,x的一切子集组成的族就是x上的一个拓扑, 叫离散拓扑,对应的空间叫离散空间;另一个拓扑仅由空集与x自己所组成,叫平凡拓扑。如果集x上定义了一个度量或距离函数,那么x内可以用一些开球的并表示的一切子集组成x上的一个拓扑,叫度量拓扑。一切开球组成的集族称为这个拓扑的一个基。一般地,拓扑J的一个子族B称为J的一个基,是指 J的每个元可表为B的一些元的并。这时,也说拓扑J是由B生成的。拓扑J的一个子族φ称为J的一个子基是指φ中元的所有有限交构成的集族是J的一个基。设A是拓扑空间x的任一子集。规定A的开集是x的开集与A的交,于是A自己构成一个拓扑空间,称为x的子空间。 空间内任何两个不相交的闭集都各有邻域互不相交。
满足T1分离公理的空间叫T1空间。满足T2分离公理的空间叫T2空间或豪斯多夫空间。一个T1空间如果还满足正则分离公理或全正则分离公理或正规分离公理,则分别称为正则空间,全正则空间和正规空间。各空间之间的蕴含关系可用“崊”表示如下:正规空间崊全正则空间崊正则空间崊T2空间崊T1空间。度量空间以及下述的紧空间和仿紧空间都是正规空间。