数学中π等于多少

2024-11-20 15:20:25
推荐回答(5个)
回答1:

π是一个无理数,所以不能直接表示出来。

圆周率(π):3.14159 26535 89793 23846 2643383279 50288 41971 69399 37510  58209 74944 59230 78164 06286  20899 86280 34825 34211 70679  82148 08651 32823 06647 09384  46095 50582 23172 53594 08128 48111 74502 84102 70193 85211.........(约等于3.141592654),通常用3.14来表示π的数值。

而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。

圆周率(  )一般定义为一个圆形的周长(  )与直径(  )之比:  ,或直接定义为单位圆的周长的一半。由相似图形的性质可知,对于任何圆形, 的值都是一样,这样就定义出常数

扩展资料

古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。

接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。

最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。阿基米德用到了迭代算法和两侧数值逼近的概念,称得上是“计算数学”的鼻祖。

参考资料:百度百科——π



回答2:

π是圆周率,约等于3.1415926,是个无限不循环小数,一般取3.14。
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
圆周率用字母 (读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。

回答3:

π是圆周率,约等于3.1415926,是个无限不循环小数,一般取3.14。
π同时也是一个弧度,换算成角度是180°。

回答4:

一般为3.14 偶尔也取成3

回答5:

人们的常识应该是3.1415926......=π 实际上科学家认为π/2才是我们认为的这个 π