电泳的基本原理是:
生物大分子如蛋白质,核酸,多糖等大多都有阳离子和阴离子基团,称为两性离子。常以颗粒分散在溶液中,它们的静电荷取决于介质的H+浓度或与其他大分子的相互作用。在电场中,带电颗粒向阴极或阳极迁移,迁移的方向取决于它们带电的符号,这种迁移现象即所谓电泳。
1807年,由俄国莫斯科大学的斐迪南·弗雷德里克·罗伊斯最早发现电泳技术。
扩展资料:
电泳作用过程
1、电解
在阴极反应最初为电解反应,生成氢气及氢氧根离子OH-,此反应造成阴极面形成一高碱性边界。
2、电泳动
阳离子树脂及 H+ 在电场作用下,向阴极移动,而阴离子向阳极移动过程。
3、电沉积
在被涂工件表面,阳离子树脂与阴极表面碱性作用,中和而析出不沉积物,沉积于被涂工件上。
4、电渗
涂料固体与工件表面上的涂膜为半透明性的,具有多数毛细孔,水被从阴极涂膜中排渗出来,在电场作用下,引起涂膜脱水,而涂膜则吸附于工件表面,而完成整个电泳过程。
原理:在确定的条件下,带电粒子在单位电场强度作用下,单位时间内移动的距离为常数,是该带电粒子的物化特征性常数。不同带电粒子因所带电荷不同,或虽所带电荷相同但荷质比不同,在同一电场中电泳,经一定时间后,由于移动距离不同而相互分离。
电泳移动规律:
1、利用电泳可以确定胶体微粒的电性质,向阳极移动的胶粒带负电荷,向阴极移动的胶粒带正电荷。
2、一般来讲,金属氢氧化物、金属氧化物等胶体微粒吸附阳离子,带正电荷;非金属氧化物、非金属硫化物等胶体微粒吸附阴离子,带负电荷。
3、在电泳实验中,氢氧化铁胶体微粒向阴极移动,三硫化二砷胶体微粒向阳极移动。利用电泳可以分离带不同电荷的溶胶。
扩展资料
主要应用方向:
1、在医院临床检验中,利用电泳技术分析血清中的酶及同工酶,可以判定血细胞的正常与异常;;测定体液中可能存在微生物、原虫的特异性抗原成分,在抗原成分分离的基础上,寻找所需的单克隆抗体等等。
2、在陶瓷生产中,借助它来除去黏土中所混杂的氧化铁杂质。由于黏土微粒带负电荷而向正极移动,氧化铁微粒带正电荷而向负极移动。因此,在正极附近就可收集到纯净的黏土。
3、电泳在农业领域用途非常广泛,它可以用于杂种优势的预测,杂种后代的鉴定,不同品种的区别,亲缘关系的分析,雄性不育系的鉴定,遗传基因的定位,植物抗性的研究等许多方面。
参考资料来源:百度百科-电泳
带电颗粒在电场作用下,向着与其电性相反的电极移动,原理是电泳涂料在阴阳两极,施加于电压作用下,带电荷的涂料离子移动到阴极,并与阴极表面所产生的碱性物质作用形成不溶解物,沉积于工件表面。
生物大分子如蛋白质,核酸,多糖等大多都有阳离子和阴离子基团,称为两性离子。常以颗粒分散在溶液中,它们的静电荷取决于介质的H+浓度或与其他大分子的相互作用。在电场中,带电颗粒向阴极或阳极迁移,迁移的方向取决于它们带电的符号,这种迁移现象即所谓电泳。
如果把生物大分子的胶体溶液放在一个没有干扰的电场中,使颗粒具有恒定迁移速率的驱动力来自于颗粒上的有效电荷Q和电位梯度E。它们与介质的摩擦阻力f抗衡。在自由溶液中这种抗衡服从Stokes定律。
阳极电泳的特点是:原料价格便宜(一般比阴极电泳便宜50%);设备较简单,投资少(一般比阴极电泳便宜30%);技术要求较低;涂层耐蚀性能较阴极电泳差(约为阴极电泳寿命的四分之一)。
阴极电泳涂层耐蚀性高的原因是:工件是阴极,不发生阳极溶解,工件表面及磷化膜不破坏;电泳涂料(一般为含氮树脂)对金属有保护作用,且所用漆价高质优。
在确定的条件下,带电粒子在单位电场强度作用下,单位时间内移动的距离(即迁移率)为常数,是该带电粒子的物化特征性常数。
不同带电粒子因所带电荷不同,或虽所带电荷相同但荷质比不同,在同一电场中电泳,经一定时间后,由于移动距离不同而相互分离。分开的距离与外加电场的电压与电泳时间成正比。
参考资料来源:百度百科--电泳
电泳是指带电颗粒在电场的作用下发生迁移的过程。许多重要的生物分子,如氨基酸、多肽、蛋白质、核苷酸、核酸等都具有可电离基团,它们在某个特定的pH值下可以带正电或负电,在电场的作用下,这些带电分子会向着与其所带电荷极性相反的电极方向移动。电泳技术就是利用在电场的作用下,由于待分离样品中各种分子带电性质以及分子本身大小、形状等性质的差异,使带电分子产生不同的迁移速度,从而对样品进行分离、鉴定或提纯的技术。