(x的3次方+y的3次方+z的3次方)-3xyz=(x+y+z)(x^2+y^2+z^2-xy-xz-yz)
因为x+y+z=0
则(x的3次方+y的3次方+z的3次方)-3xyz=0
(x的3次方+y的3次方+z的3次方)=3xyz
解:由题意得:
(x+y+z)^3=x^3+y^3+z^3+3x^2(y+z)+3y^2(x+z)+3z^2(x+y)+6xyz=x^3+y^3+z^3-3x^3-3y^3-3z^3+6xyz
=-2x^3-2y^3-2z^3+6xyz=0
所以x^3+y^3+z^3=3xyz
x+y=-z
x^3+y^3+z^3
=x^3+y^3+(-x-y)^3
=x^3+y^3-x^3-y^3-3x^2y-3xy^2
=-3xy(x+y)
=3xyz