解:∵ρ=lim(n→∞)丨an+1/an丨=lim(n→∞)n(n+1)/[(n+1)(n+2)]=1,∴收敛半径R=1/ρ=1。又lim(n→∞)丨Un+1/Un丨=丨x丨/R<1,∴丨x丨<1,即-1而当x=-1时,是交错级数,级数为∑(-1)^n/[n(n+1)]≤∑1/[n(n+1),而后者收敛;当x=1时,收敛。∴收敛区间为-1≤x≤1,即x∈[-1,1]。