(1)①S阴影=S扇形ABC+S△BP′C-S扇形PBP′-S△ABP
=S扇形ABC-S扇形PBP′
=
,90π(a2?b2) 360
=
(a2-b2);π 4
②连接PP′,
根据旋转的性质可知:
BP=BP′,∠PBP′=90°;
即:△PBP′为等腰直角三角形,
∴∠BPP′=45°,
∵∠BPA=∠BP′C=135°,∠BP′P=45°,
∴∠BPA+∠BPP′=180°,
即A、P、P′共线,
∴∠PP′C=135°-45°=90°;
在Rt△PP′C中,PP′=4
,P′C=PA=2,根据勾股定理可得PC=6.
2
(2)将△PAB绕点B顺时针旋转90°到△P′CB的位置,连接PP′.
同(1)①可知:△BPP′是等腰直角三角形,即PP′2=2PB2;
∵PA2+PC2=2PB2=PP′2,
∴PC2+P′C2=PP′2,
∴∠P′CP=90°;
∵∠PBP′=∠PCP′=90°,在四边形BPCP′中,∠BP′C+∠BPC=180°;
∵∠BPA=∠BP′C,
∴∠BPC+∠APB=180°,即点P在对角线AC上.