如何证明最优装载问题具有贪心选择性质

2024-11-27 05:56:08
推荐回答(2个)
回答1:

比如所你是按每次装入重量最小的作为贪心的选择,那么设重量从小到大(x1,x2,...,xn)是最优装载问题的一个最优解。设k=min{i|xi=1}.当k=1的时候(x1,x2,...,xn)是一个满足贪心性质的最优解。当k>1,令y=1,yk=0,yi=xi,i不等于k,那么yi与对应重量wi的乘积的和=w1-wk+wixi乘积的和,这个是小于等于本身wi*xi乘积的和的,小于容量c因此,(y1,y2,...,yn)也是最优装载问题的可行解。然而,xi的和与yi的和是相等的,也就是说,(y1,y2,...,yn)也是满组贪心性质的最优解。矛盾。

回答2:

设某种货币系统为(1,5,10,25)四种币值(单位:元),要用最少的币数找出 n元钱,
问:能否用贪心算法进行求解,并证明。(不要求写算法) 参考解答:贪心性质(最大面额优先选最多)证明:
对 n<=25的情况,易由穷举得证。
当 n>25时,设 n=1*a1+5*a2+10*a3+25*a4
为了使 a1+a2+a3+a4最小,易知:
a1<5,若 a1>=5,可将 5个 1元兑换为 1个 5元,币数减少。
a2<2,若 a2>=2,可将 2个 5元兑换为 1个 10元,币数减少。
当 a2=0时,a3<3,若 a3>=3,可将 3个 10元兑换为 1个 5元和 1个 25元,币数减 少。
当 a2>0时,a3<2,若 a2>=2,可将 1个 5元和 2个 10元兑换为 1个 25元,币数减 少。
即,为了使 a1+a2+a3+a4最小,所使用的 1、5、10元币的币数的上限为: a1=4,a2=0,a3=2或 a1=4,a2=1,a3=1
则所使用的 1、5、10元币的币值上限为:
4*1+0*5+2*10=24或 4*1+1*5+1*10=19
均不超过 25,因此,为了使 a1+a2+a3+a4最小,应使 a4达到最大。贪心选择性质得 证。
最优子结构性质证明:
当 a4的值确定后,为了使 a1+a2+a3+a4达到最小,须使 a1+a2+a3达到最小,仍为同 型的最优问题。