设x=a tan t
上式 = 1/a^2 ∫ cost dt
=1/a^2 sint +C
又tant =x/a 故 sint =x/根号(x^2+a^2)
故上式=x/a^2根号(x^2+a^2) + C
换元x=a×tant,-π/2<x<π/2.
∫(x^2+a^2)^(-3/2) dx=1/a^2×∫costdt=1/a^2×sint+C=1/a^2×x/√(x^2+a^2)+C
∫
dx/(a²+x²)^(3/2),x=a*tany,dx=a*sec²y
dy
=
∫
(a*sec²y)/(a²+a²*tan²y)^(3/2)
=
∫
(a*sec²y)/(a³*sec³y)
dy
=
(1/a²)∫
cosy
dy
=
(1/a²)
*
siny
+
c
=
(1/a²)
*
x/√(a²+x²)
+
c
=
x/[a²√(a²+x²)]
+
c