∫(x^2+a^2)^(-3⼀2) dx

2024-11-20 07:24:32
推荐回答(3个)
回答1:

设x=a tan t

上式 = 1/a^2 ∫ cost dt

=1/a^2 sint +C

又tant =x/a 故 sint =x/根号(x^2+a^2)

故上式=x/a^2根号(x^2+a^2) + C

回答2:

换元x=a×tant,-π/2<x<π/2.

∫(x^2+a^2)^(-3/2) dx=1/a^2×∫costdt=1/a^2×sint+C=1/a^2×x/√(x^2+a^2)+C

回答3:


dx/(a²+x²)^(3/2),x=a*tany,dx=a*sec²y
dy
=

(a*sec²y)/(a²+a²*tan²y)^(3/2)
=

(a*sec²y)/(a³*sec³y)
dy
=
(1/a²)∫
cosy
dy
=
(1/a²)
*
siny
+
c
=
(1/a²)
*
x/√(a²+x²)
+
c
=
x/[a²√(a²+x²)]
+
c