硬件防火墙的基本原理及内部构造

2025-01-05 15:16:16
推荐回答(3个)
回答1:

防火墙就是一种过滤塞(目前你这么理解不算错),你可以让你喜欢的东西通过这个塞子,别的玩意都统统过滤掉。在网络的世界里,要由防火墙过滤的就是承载通信数据的通信包。

天下的防火墙至少都会说两个词:Yes或者No。直接说就是接受或者拒绝。最简单的防火墙是以太网桥。但几乎没有人会认为这种原始防火墙能管多大用。大多数防火墙采用的技术和标准可谓五花八门。这些防火墙的形式多种多样:有的取代系统上已经装备的TCP/IP协议栈;有的在已有的协议栈上建立自己的软件模块;有的干脆就是独立的一套操作系统。还有一些应用型的防火墙只对特定类型的网络连接提供保护(比如SMTP或者HTTP协议等)。还有一些基于硬件的防火墙产品其实应该归入安全路由器一类。以上的产品都可以叫做防火墙,因为他们的工作方式都是一样的:分析出入防火墙的数据包,决定放行还是把他们扔到一边。

所有的防火墙都具有IP地址过滤功能。这项任务要检查IP包头,根据其IP源地址和目标地址作出放行/丢弃决定。看看下面这张图,两个网段之间隔了一个防火墙,防火墙的一端有台UNIX计算机,另一边的网段则摆了台PC客户机。

当PC客户机向UNIX计算机发起telnet请求时,PC的telnet客户程序就产生一个TCP包并把它传给本地的协议栈准备发送。接下来,协议栈将这个TCP包“塞”到一个IP包里,然后通过PC机的TCP/IP栈所定义的路径将它发送给UNIX计算机。在这个例子里,这个IP包必须经过横在PC和UNIX计算机中的防火墙才能到达UNIX计算机。

现在我们“命令”(用专业术语来说就是配制)防火墙把所有发给UNIX计算机的数据包都给拒了,完成这项工作以后,“心肠”比较好的防火墙还会通知客户程序一声呢!既然发向目标的IP数据没法转发,那么只有和UNIX计算机同在一个网段的用户才能访问UNIX计算机了。

还有一种情况,你可以命令防火墙专给那台可怜的PC机找茬,别人的数据包都让过就它不行。这正是防火墙最基本的功能:根据IP地址做转发判断。但要上了大场面这种小伎俩就玩不转了,由于黑客们可以采用IP地址欺骗技术,伪装成合法地址的计算机就可以穿越信任这个地址的防火墙了。不过根据地址的转发决策机制还是最基本和必需的。另外要注意的一点是,不要用DNS主机名建立过滤表,对DNS的伪造比IP地址欺骗要容易多了。

服务器TCP/UDP 端口过滤

仅仅依靠地址进行数据过滤在实际运用中是不可行的,还有个原因就是目标主机上往往运行着多种通信服务,比方说,我们不想让用户采用 telnet的方式连到系统,但这绝不等于我们非得同时禁止他们使用SMTP/POP邮件服务器吧?所以说,在地址之外我们还要对服务器的TCP/ UDP端口进行过滤。

比如,默认的telnet服务连接端口号是23。假如我们不许PC客户机建立对UNIX计算机(在这时我们当它是服务器)的telnet连接,那么我们只需命令防火墙检查发送目标是UNIX服务器的数据包,把其中具有23目标端口号的包过滤就行了。这样,我们把IP地址和目标服务器TCP/UDP端口结合起来不就可以作为过滤标准来实现相当可靠的防火墙了吗?不,没这么简单。

客户机也有TCP/UDP端口

TCP/IP是一种端对端协议,每个网络节点都具有唯一的地址。网络节点的应用层也是这样,处于应用层的每个应用程序和服务都具有自己的对应“地址”,也就是端口号。地址和端口都具备了才能建立客户机和服务器的各种应用之间的有效通信联系。比如,telnet服务器在端口23侦听入站连接。同时telnet客户机也有一个端口号,否则客户机的IP栈怎么知道某个数据包是属于哪个应用程序的呢?

由于历史的原因,几乎所有的TCP/IP客户程序都使用大于1023的随机分配端口号。只有UNIX计算机上的root用户才可以访问1024以下的端口,而这些端口还保留为服务器上的服务所用。所以,除非我们让所有具有大于1023端口号的数据包进入网络,否则各种网络连接都没法正常工作。

这对防火墙而言可就麻烦了,如果阻塞入站的全部端口,那么所有的客户机都没法使用网络资源。因为服务器发出响应外部连接请求的入站(就是进入防火墙的意思)数据包都没法经过防火墙的入站过滤。反过来,打开所有高于1023的端口就可行了吗?也不尽然。由于很多服务使用的端口都大于1023,比如X client、基于RPC的NFS服务以及为数众多的非UNIX IP产品等(NetWare/IP)就是这样的。那么让达到1023端口标准的数据包都进入网络的话网络还能说是安全的吗?连这些客户程序都不敢说自己是足够安全的。

双向过滤

OK,咱们换个思路。我们给防火墙这样下命令:已知服务的数据包可以进来,其他的全部挡在防火墙之外。比如,如果你知道用户要访问Web服务器,那就只让具有源端口号80的数据包进入网络:

不过新问题又出现了。首先,你怎么知道你要访问的服务器具有哪些正在运行的端口号呢? 象HTTP这样的服务器本来就是可以任意配置的,所采用的端口也可以随意配置。如果你这样设置防火墙,你就没法访问哪些没采用标准端口号的的网络站点了!反过来,你也没法保证进入网络的数据包中具有端口号80的就一定来自Web服务器。有些黑客就是利用这一点制作自己的入侵工具,并让其运行在本机的80端口!

检查ACK位

源地址我们不相信,源端口也信不得了,这个不得不与黑客共舞的疯狂世界上还有什么值得我们信任呢?还好,事情还没到走投无路的地步。对策还是有的,不过这个办法只能用于TCP协议。

TCP是一种可靠的通信协议,“可靠”这个词意味着协议具有包括纠错机制在内的一些特殊性质。为了实现其可靠性,每个TCP连接都要先经过一个“握手”过程来交换连接参数。还有,每个发送出去的包在后续的其他包被发送出去之前必须获得一个确认响应。但并不是对每个TCP包都非要采用专门的ACK包来响应,实际上仅仅在TCP包头上设置一个专门的位就可以完成这个功能了。所以,只要产生了响应包就要设置ACK位。连接会话的第一个包不用于确认,所以它就没有设置ACK位,后续会话交换的TCP包就要设置ACK位了。

举个例子,PC向远端的Web服务器发起一个连接,它生成一个没有设置ACK位的连接请求包。当服务器响应该请求时,服务器就发回一个设置了ACK位的数据包,同时在包里标记从客户机所收到的字节数。然后客户机就用自己的响应包再响应该数据包,这个数据包也设置了ACK位并标记了从服务器收到的字节数。通过监视ACK位,我们就可以将进入网络的数据限制在响应包的范围之内。于是,远程系统根本无法发起TCP连接但却能响应收到的数据包了。

这套机制还不能算是无懈可击,简单地举个例子,假设我们有台内部Web服务器,那么端口80就不得不被打开以便外部请求可以进入网络。还有,对UDP包而言就没法监视ACK位了,因为UDP包压根就没有ACK位。还有一些TCP应用程序,比如FTP,连接就必须由这些服务器程序自己发起。

FTP带来的困难

一般的Internet服务对所有的通信都只使用一对端口号,FTP程序在连接期间则使用两对端口号。第一对端口号用于FTP的“命令通道”提供登录和执行命令的通信链路,而另一对端口号则用于FTP的“数据通道”提供客户机和服务器之间的文件传送。

在通常的FTP会话过程中,客户机首先向服务器的端口21(命令通道)发送一个TCP连接请求,然后执行LOGIN、DIR等各种命令。一旦用户请求服务器发送数据,FTP服务器就用其20端口 (数据通道)向客户的数据端口发起连接。问题来了,如果服务器向客户机发起传送数据的连接,那么它就会发送没有设置ACK位的数据包,防火墙则按照刚才的规则拒绝该数据包同时也就意味着数据传送没戏了。通常只有高级的、也就是够聪明的防火墙才能看出客户机刚才告诉服务器的端口,然后才许可对该端口的入站连接。

UDP端口过滤

好了,现在我们回过头来看看怎么解决UDP问题。刚才说了,UDP包没有ACK位所以不能进行ACK位过滤。UDP 是发出去不管的“不可靠”通信,这种类型的服务通常用于广播、路由、多媒体等广播形式的通信任务。NFS、DNS、WINS、NetBIOS-over-TCP/IP和 NetWare/IP都使用UDP。

看来最简单的可行办法就是不允许建立入站UDP连接。防火墙设置为只许转发来自内部接口的UDP包,来自外部接口的UDP包则不转发。现在的问题是,比方说,DNS名称解析请求就使用UDP,如果你提供DNS服务,至少得允许一些内部请求穿越防火墙。还有IRC这样的客户程序也使用UDP,如果要让你的用户使用它,就同样要让他们的UDP包进入网络。我们能做的就是对那些从本地到可信任站点之间的连接进行限制。但是,什么叫可信任!如果黑客采取地址欺骗的方法不又回到老路上去了吗?

有些新型路由器可以通过“记忆”出站UDP包来解决这个问题:如果入站UDP包匹配最近出站UDP包的目标地址和端口号就让它进来。如果在内存中找不到匹配的UDP包就只好拒绝它了!但是,我们如何确信产生数据包的外部主机就是内部客户机希望通信的服务器呢?如果黑客诈称DNS服务器的地址,那么他在理论上当然可以从附着DNS的UDP端口发起攻击。只要你允许DNS查询和反馈包进入网络这个问题就必然存在。办法是采用代理服务器。

所谓代理服务器,顾名思义就是代表你的网络和外界打交道的服务器。代理服务器不允许存在任何网络内外的直接连接。它本身就提供公共和专用的DNS、邮件服务器等多种功能。代理服务器重写数据包而不是简单地将其转发了事。给人的感觉就是网络内部的主机都站在了网络的边缘,但实际上他们都躲在代理的后面,露面的不过是代理这个假面具。

小结

IP地址可能是假的,这是由于IP协议的源路有机制所带来的,这种机制告诉路由器不要为数据包采用正常的路径,而是按照包头内的路径传送数据包。于是黑客就可以使用系统的IP地址获得返回的数据包。有些高级防火墙可以让用户禁止源路由。通常我们的网络都通过一条路径连接ISP,然后再进入Internet。这时禁用源路由就会迫使数据包必须沿着正常的路径返回。

还有,我们需要了解防火墙在拒绝数据包的时候还做了哪些其他工作。比如,防火墙是否向连接发起系统发回了“主机不可到达”的ICMP消息?或者防火墙真没再做其他事?这些问题都可能存在安全隐患。ICMP“主机不可达”消息会告诉黑客“防火墙专门阻塞了某些端口”,黑客立即就可以从这个消息中闻到一点什么气味。如果ICMP“主机不可达”是通信中发生的错误,那么老实的系统可能就真的什么也不发送了。反过来,什么响应都没有却会使发起通信的系统不断地尝试建立连接直到应用程序或者协议栈超时,结果最终用户只能得到一个错误信息。当然这种方式会让黑客无法判断某端口到底是关闭了还是没有使用。

...防火墙分为软件防火墙和硬件防火墙两种。软件防火墙是安装在pc平台的软件产品,它通过在操作系统底层工作来实现网络管理和防御功能的优化。但对国内市场上的硬件防火墙产品介绍仔细研读后,记者发现,对于硬件防火墙的定义,厂商们似乎仍莫衷一是。大多数厂商对产品的介绍,往往用大量的篇幅向消费者灌输产品的防护功能,而关于防火墙的实际配置,则基本没有提及。
查阅国内外大量资料后,发现硬件防火墙一般有着这样的核心要求:它的硬件和软件都需要单独设计,有专用网络芯片来处理数据包;同时,采用专门的操作系统平台,从而避免通用操作系统的安全性漏洞。对软硬件的特殊要求,使硬件防火墙的实际带宽与理论值基本一致,有着高吞吐量、安全与速度兼顾的优点。
而国内市场的硬件防火墙,大部分都是所谓的“软硬件结合的防火墙”,采用的是定制机箱+x86硬件架构+防火墙软件模块(大多数是基于unix类系统下开发的),而且是pc box结构。这种防火墙的核心技术实际上仍然是软件,吞吐量不高,容易造成带宽瓶颈。并且pc架构本身就不稳定,更不可能长时间运行。

回答2:

硬件防火墙

这里说的硬件防火墙是指“所谓的硬件防火墙”。之所以加上"所谓"二字是针对芯片级防火墙说的了。它们最大的差别在于是否基于专用的硬件平台。目前市场上大多数防火墙都是这种所谓的硬件防火墙,他们都基于PC架构,就是说,它们和普通的家庭用的PC没有太大区别。在这些PC架构计算机上运行一些经过裁剪和简化的操作系统,最常用的有老版本的Unix、Linux和FreeBSD系统。 值得注意的是,由于此类防火墙采用的依然是别人的内核,因此依然会受到OS(操作系统)本身的安全性影响。

传统硬件防火墙一般至少应具备三个端口,分别接内网,外网和DMZ区(非军事化区),现在一些新的硬件防火墙往往扩展了端口,常见四端口防火墙一般将第四个端口做为配置口、管理端口。很多防火墙还可以进一步扩展端口数目。

回答3:

  硬件防火墙是指把防火墙程序做到芯片里面,由硬件执行这些功能,能减少CPU的负担,使路由更稳定。
  硬件防火墙是保障内部网络安全的一道重要屏障。它的安全和稳定,直接关系到整个内部网络的安全。因此,日常例行的检查对于保证硬件防火墙的安全是非常重要的。
  软件防火墙只有包过滤的功能,硬件防火墙中可能还有除软件防火墙以外的其他功能,例如CF(内容过滤)IDS(入侵侦测)IPS(入侵防护)以及VPN等等的功能。
  也就是说硬件防火墙是指把防火墙程序做到芯片里面,由硬件执行这些功能,能减少CPU的负担,使路由更稳定。
  硬件防火墙是保障内部网络安全的一道重要屏障。它的安全和稳定,直接关系到整个内部网络的安全。因此,日常例行的检查对于保证硬件防火墙的安全是非常重要的。
  系统中存在的很多隐患和故障在暴发前都会出现这样或那样的苗头,例行检查的任务就是要发现这些安全隐患,并尽可能将问题定位,方便问题的解决。
  (1)包过滤防火墙
  包过滤防火墙一般在路由器上实现,用以过滤用户定义的内容,如IP地址。包过滤防火墙的工作原理是:系统在网络层检查数据包,与应用层无关。这样系统就具有很好的传输性能,可扩展能力强。但是,包过滤防火墙的安全性有一定的缺陷,因为系统对应用层信息无感知,也就是说,防火墙不理解通信的内容,所以可能被黑客所攻破。
  图1:包过滤防火墙工作原理图
  (2)应用网关防火墙
  应用网关防火墙检查所有应用层的信息包,并将检查的内容信息放入决策过程,从而提高网络的安全性。然而,应用网关防火墙是通过打破客户机/服务器模式实现的。每个客户机/服务器通信需要两个连接:一个是从客户端到防火墙,另一个是从防火墙到服务器。另外,每个代理需要一个不同的应用进程,或一个后台运行的服务程序,对每个新的应用必须添加针对此应用的服务程序,否则不能使用该服务。所以,应用网关防火墙具有可伸缩性差的缺点。
  图2:应用网关防火墙工作原理图
  (3)状态检测防火墙
  状态检测防火墙基本保持了简单包过滤防火墙的优点,性能比较好,同时对应用是透明的,在此基础上,对于安全性有了大幅提升。这种防火墙摒弃了简单包过滤防火墙仅仅考察进出网络的数据包,不关心数据包状态的缺点,在防火墙的核心部分建立状态连接表,维护了连接,将进出网络的数据当成一个个的事件来处理。可以这样说,状态检测包过滤防火墙规范了网络层和传输层行为,而应用代理型防火墙则是规范了特定的应用协议上的行为。
  图3:状态检测防火墙工作原理图
  (4)复合型防火墙
  复合型防火墙是指综合了状态检测与透明代理的新一代的防火墙,进一步基于ASIC架构,把防病毒、内容过滤整合到防火墙里,其中还包括VPN、IDS功能,多单元融为一体,是一种新突破。常规的防火墙并不能防止隐蔽在网络流量里的攻击,在网络界面对应用层扫描,把防病毒、内容过滤与防火墙结合起来,这体现了网络与信息安全的新思路。它在网络边界实施OSI第七层的内容扫描,实现了实时在网络边缘部署病毒防护、内容过滤等应用层服务措施。
  3、四类防火墙的对比
  包过滤防火墙:包过滤防火墙不检查数据区,包过滤防火墙不建立连接状态表,前后报文无关,应用层控制很弱。
  应用网关防火墙:不检查IP、TCP报头,不建立连接状态表,网络层保护比较弱。
  状态检测防火墙:不检查数据区,建立连接状态表,前后报文相关,应用层控制很弱。
  复合型防火墙:可以检查整个数据包内容,根据需要建立连接状态表,网络层保护强,应用层控制细,会话控制较弱。
  4、防火墙术语
  网关:在两个设备之间提供转发服务的系统。网关是互联网应用程序在两台主机之间处理流量的防火墙。这个术语是非常常见的。
  DMZ非军事化区:为了配置管理方便,内部网中需要向外提供服务的服务器往往放在一个单独的网段,这个网段便是非军事化区。防火墙一般配备三块网卡,在配置时一般分别分别连接内部网,internet和DMZ。
  吞吐量:网络中的数据是由一个个数据包组成,防火墙对每个数据包的处理要耗费资源。吞吐量是指在不丢包的情况下单位时间内通过防火墙的数据包数量。这是测量防火墙性能的重要指标。
  最大连接数:和吞吐量一样,数字越大越好。但是最大连接数更贴近实际网络情况,网络中大多数连接是指所建立的一个虚拟通道。防火墙对每个连接的处理也好耗费资源,因此最大连接数成为考验防火墙这方面能力的指标。
  数据包转发率:是指在所有安全规则配置正确的情况下,防火墙对数据流量的处理速度。
  SSL:SSL(Secure Sockets Layer)是由Netscape公司开发的一套Internet数据安全协议,当前版本为3.0。它已被广泛地用于Web浏览器与服务器之间的身份认证和加密数据传输。SSL协议位于TCP/IP协议与各种应用层协议之间,为数据通讯提供安全支持。
  网络地址转换:网络地址转换(NAT)是一种将一个IP地址域映射到另一个IP地址域技术,从而为终端主机提供透明路由。NAT包括静态网络地址转换、动态网络地址转换、网络地址及端口转换、动态网络地址及端口转换、端口映射等。NAT常用于私有地址域与公用地址域的转换以解决IP地址匮乏问题。在防火墙上实现NAT后,可以隐藏受保护网络的内部拓扑结构,在一定程度上提高网络的安全性。如果反向NAT提供动态网络地址及端口转换功能,还可以实现负载均衡等功能。
  堡垒主机:一种被强化的可以防御进攻的计算机,被暴露于因特网之上,作为进入内部网络的一个检查点,以达到把整个网络的安全问题集中在某个主机上解决,从而省时省力,不用考虑其它主机的安全的目的。