(x^5+x^4-8)/(x³-x²)
=(x^5-x^4+2x^4-2x³+2x³-2x²+2x²-8)/[x²(x-1)]
=[(x-1)(x^4+2x³+2x²)+2x²-8]/[x²(x-1)]
=x²+2x+2+(2x²-8)/[x²(x-1)]
=x²+2x+2 +A/(x-1)+B/x+C/x²
=x²+2x+2 +(Ax²+Bx²-Bx+Cx-C)/[x²(x-1)]
A+B=2, C-B=0, C=8, B=8, A=-6
原式=x²+2x+2 -6/(x-1)+8/x+8/x²