一元二次方程求根公式详细的推导过程。
一元二次方程的根公式是由配方法推导来的,那么由ax^2+bx+c(一元二次方程的基本形式)推导根公式的详细过程如下,
1、ax^2+bx+c=0(a≠0,^2表示平方),等式两边都除以a,得x^2+bx/a+c/a=0,
2、移项得x^2+bx/a=-c/a,方程两边都加上一次项系数b/a的一半的平方,即方程两边都加上b^2/4a^2,
3、配方得x^2+bx/a+b^2/4a^2=b^2/4a^2-c/a,即(x+b/2a)^2=(b^2-4ac)/4a,
4、开根后得x+b/2a=±[√(b^2-4ac)]/2a(√表示根号),最终可得x=[-b±√(b^2-4ac)]/2a。
一、一元二次方程求根公式
1、公式描述:一元二次方程形式:ax2+bx+c=0(a≠0,且a,b,c是常数)。
推导:
对任意一元二次方程ax^2+bx+c=0 (a≠0)
等式两边都除以a,得:
x^2+bx/a+c/a=0,
移项,得:
x^2+bx/a=-c/a,
方程两边都加上一次项系数b/a的一半的平方,即方程两边都加上b^2/4a^2,(配方)得
x^2+bx/a+b^2/4a^2=b^2/4a^2-c/a,
即 (x+b/2a)^2=(b^2-4ac)/4a.
x+b/2a=±[√(b^2-4ac)]/2a.
得:
x=[-b±√(b^2-4ac)]/2a.