这个在物理课本上提到过,不过具体的,估计很少有人懂,只能提供一些信息
根据90年代提出的M理论(超弦理论的一种),宇宙是11维的,由震动的平面构成的。在爱因斯坦那里,宇宙只是4维的(3维空间和1维时间),现代物理学则认为还有7维空间我们看不见。
科学家们对我们已认知的维与可能存在但未被认知的维之间的区别是如何解释的呢?他们打了一个比方:一只蚂蚁在一张纸上行走,它只能向右或向左,向前或向后走。对它来说高与低均无意义,这就是说,第3维的空间是存在的,但没有被蚂蚁所认识。同样,我们的世界是由4维构成的(3个空间维,1个时间维),但我们没有觉察到所有其他的维。
根据物理学家的看法还应该有7个维。尽管有这么多的维,但这些维是看不见的,它们自身卷在了一起,被称为压缩的维。为了弄清这种看法,让我们再以蚂蚁为例展开我们的想像。我们可以设想一下,将蚂蚁在上面行走的那张纸卷起来,直到卷成一个圆筒形。如果蚂蚁沿着的纸壁走,最后它又会回到出发点,这就是压缩维的一个例子。如果能沿着著名的麦比乌斯带走,也会发生上述现象,当然,它是3维的,但如果沿着它走过,总是会回到出发点的。麦比乌斯带从维的角度讲是压缩的,按照物理学它有3个维,但谁在上面行走,都只能认知人一个维。这就有点像左图上的人:上行或者下行,但永远不会走到尽头。如果蚂蚁不是沿着纸筒弯曲的壁行走,它就永远不会返回到原出发点。这就是2维(或者说被我们所感知的那种维)的例子,沿着它一直走,就不可能返回到原来的出发点。
麦比乌斯带
一种单侧、不可定向的曲面。因A.F.麦比乌斯发现而得名。将一个长方形纸条ABCD的一端AB固定,另一端DC扭转半周后,把 AB和CD粘合在一起 ,得到的曲面就是麦比乌斯带。关于麦比乌斯带的单侧性,可如下直观地了解,如果给麦比乌斯带着色,色笔始终沿曲面移动,且不越过它的边界,最后可把麦比乌斯带两面均涂上颜色 ,即区分不出何是正面,何是反面。对圆柱面则不同,在一侧着色不通过边界不可能对另一侧也着色。单侧性又称不可定向性。以曲面上除边缘外的每一点为圆心各画一个小圆,对每个小圆周指定一个方向,称为相伴麦比乌斯带单侧曲面圆心点的指向,若能使相邻两点相伴的指向相同,则称曲面可定向,否则称为不可定向。麦比乌斯带是不可定向的。
麦比乌斯带单侧曲面
德国数学家麦比乌斯在1858年发现的
11维空间可能存在,但人类能感知的可能也只有4维了
这只是在理论上存在的无论科技多发达我们永远无法看到他
就象一维空间的生物无法看到二维空间一样
按照爱因斯坦的相对论来说,有可能存在
现在都有3.5维空间了