∵AB=AC
∴∠ABC=∠ACB
又∵EF∥BC
∴∠BAE=∠ABC=∠ACB=∠CAF
在△ABE和△ACF中
AB=AC
∠BAE=∠CAF
AE=AF
∴△ABE≌△ACF(SAS)
∴BE=CF
∵AB=AC,AE=AF,EF∥BC
∴∠ABC=∠ACB(等腰三角形),∠FAC=∠ACB,∠EAB=∠ABC(内错角)
∴∠EAB=∠FAC
∴△EAB≌△FAC
∴EB=FC
解:
∵EF∥BC,AB = AC
∴∠CAF = ∠ACB = ∠ABC = ∠BAE
且AE = AF
∴△ABE≌△ACF
∴BE = CF