人为什么要学数学?其实很多人并不清楚,甚至存在许多认识误区。有学生认为,“数学除了买东西的时候有点用,考试的时候有点用,没有多大的实际用途。”还有学生认为,“学数学一切为了高考,没有高考就没有人会学这些没有用的东西。”其实,数学是一个意义的领域。
1、数学意义——科学的立场
数学一直是形成人类文化的主要力量,通过数学这面镜子可以了解一个时代的特征。古希腊数学家强调严密的推理,他们关心的并不是这些成果的实用性,而是教育人们去进行抽象的推理,激发人们对理想和美的追求。所以,古希腊创造了后世很难超越的优美文学,理性化的哲学,以及理想化的建筑与雕刻。中国古代数学崇尚实用,最大的缺点是缺少严格求证的思想。“数学和各种科学假说的数学化已经成为近代科学的脊梁骨”。一个时代的特征与这个时代的数学活动密切相关。17世纪以来,由于微积分的创立,借助微积分工具在寻求自然规律方面所取得的成功远远超出了天文学的领域。19 世纪,由于把微积分这个工具改进为严格的分析体系,使数学物理强有力的理论成为可能,最终导致了量子力学、相对论的诞生,使人们对物质和空间的基本性质有更深的了解。20 世纪 50 年代,数学的发展创造了计算机,数学从科学的幕后走向台前,数字化深入到了人类几乎所有的活动。
数学能像音乐一样,给人以巨大的心灵震撼。罗素在自传中这样写道:“我 11 岁时,我开始学习欧几里得几何学,哥哥做我的老师,这是我生活中的一件大事,就像初恋一样令人陶醉。我从来没有想象到世界上还有如此美妙的东西。”在人们的印象中,数学与艺术很少有共同之处,虽然它们都是人类智慧的结晶。然而,数学始终默默地伴随着艺术,为它提供丰富的灵感之源和坚实的创作支柱。数学能产生艺术的灵感,艺术也能使数学产生灵感。从斐波那契数列和圆周率的小数位数字,到四面体和麦比乌斯带,都可以作为艺术家创作的灵感。音乐是人类精神通过无意识计算而获得的愉悦享受。法国数学家傅立叶证明了:所有的声音,无论是噪音还是仪器发出的声音,复杂的还是简单的声音,都可以用数学方式进行全面的描述。傅立叶的证明具有深刻的哲学意义。美妙的音乐以令人意想不到的美妙方式得到了数学描述,从而,艺术中最抽象的领域能转换成最抽象的科学;而最富有理性的学问,也有合乎理性的音乐与其密切相联。所以,数学是推理中的音乐,而音乐则是感觉中的数学。数学和建筑间的紧密联系应该没有什么可惊奇的。数学一直是建筑师们取之不尽用之不竭的创造源泉,是建筑设计与创新的宝贵工具。
不仅自然科学,各门社会科学也同样地不断求助于数学。随着数学与其它科学之间关系的更深入的揭示,数学又获得了一种新的称谓——伙伴。美国数学家斯蒂恩对数学与其它学科作了这样的比喻:许多有学问的人,特别是科学家和工程师,把数学想象成一棵知识之树,公式、定理和结论就像挂在树上的成熟的果实,让路过的科学家采摘,用以丰富他们的理论。数学家则与之相反,他们视数学如迅速生长的热带雨林,需要从数学之外的世界吸取养分,同时它又奉献给人类文明丰富的、变化无穷的智慧动植物。数学对其它学科做出了许多贡献,同时,这些学科正用一些有趣的新型问题向数学家发出了挑战,这些问题又导致了新的应用,且越基本的数学其用处更广。可以想象,随着人类社会的发展,数学会成为最基本的学科,会成为所有科学的框架。如果采用后现代谚语来说,就是几乎没有什么东西能够避开数学的“文本”。可以说,如果我们的世界里数学突然被抽走,人类社会将顷刻崩溃;如果我们的世界里数学被冻结,人类文明将即刻倒退。没有数学的文明是不可以想象的。
2、数学意义——教育的立场
学作为人的基本素质,在古希腊社会尤其明显。希腊哲人以知识为善,追求真善美乃是希腊教的宗旨。柏拉图认为数学是具备公民资格的前提,人的灵魂受到数学的陶冶之后,就有可能超凡脱俗,回到圣洁至上的理念世界而得到拯救。接受训练而能以逻辑和数学进行推理的人,将更有可能逃出无知的洞穴。数学不仅是人的基本素质,数学还能提升智能,增进才能。柏拉图认为,那些天性擅长算术的人,往往也敏于学习其它一切学科;而那些反应迟缓的人,如果受了算术的训练,他们的反应也总会有所改善。柏拉图特别强调,几何学中高深的东西能够帮助人们较为容易地把握善的理念。不知道基本的数学语言,不理解基本的数学符号,不掌握基本的数学推理,不懂得基本统计图表,这样的人将不能适应现代社会的快速发展。在信息社会,数学作为现代人的基本素质,已经越来越被人们所认识。数学以它的思维性、理性精神和优美性成为当今社会文化中的一个基础组成部分。可以说,没有数学,我们几乎不能很好地生活;没有数学,我们几乎不能很好地工作;没有数学,我们几乎不能很好地思考;没有数学,我们几乎不能很好地交流;没有数学,我们几乎不能很好地欣赏。
通过数学的学习,“能够促进学生的学习态度、思维习惯、思维模式、思维策略等的发展,让每个学生面对全新的情景都能做出适当的回应”。传统实证主义知识观将知识描述成线性积累和价值中立,忽略知识创造中人的活动,忽视知识所蕴涵的伦理意义。然而,知识本质上是一种社会建构,它必然体现人的价值选择,表现人的伦理关怀。数学也不例外,对于数学来说,它可以促进人的下列优秀品质的形成。
第一,诚实正直,崇尚真理。计算、证明并不是一个简单的操作步骤或形式化过程,而是一系列的观点与洞察。数学结论对任何人都一样,必须接受理性法庭的裁决,对就是对,错就是错。数学计算、数学演绎、数学证明都不能靠投机取巧,而只能靠一步一步的计算与推理。通过数学的学习,可以培养诚实正直、以理服人、坚持真理、有错就改的优良品格。
第二,勤于思考,勇于创新。要启发人类这种独有的、高贵的创新能力,莫过于数学。没有哪一门学科能像数学这样集中、加速和强化人们的注意力。事实证明,数学家的成功并不在于他们的天赋有多高,而主要取决于他们的勤奋和创新。
第三,坚韧不拔,敢于攀登。几何中没有王者之路,数学研究需要有坚强的毅力。因为数学命题的证明犹如登山,只有那些坚忍不拔、勇于探索的人,才能达到胜利的彼岸。数学是一所优秀的思维学校,数学是一门睿智的训练学科,数学是一种抽象的思维模式。精确的数学语言让我们有条不紊地思考复杂的决策,而不是只凭轶事、猜测和雄辩。学习数学的人更能有效地进行思维,发展人的思维能力是数学重要的文化功能,没有数学就不会有有组织的逻辑思维。数学能使人们的思维方式严格化,养成有步骤地进行推理的习惯。
数学是打开机会大门的钥匙。数学不仅是科学的语言,而且以直接的方式为商业、财政、经济、国防做出贡献,为学生打开职业的大门。一个人懂得的数学越多,就会有更多的职业之门向他开放。今天,那些理解数学并且能做数学的人,将比那些不懂数学的人获得更多的机会。从保险公司统计员、系统分析家、营销专家、网络管理人,到金融分析家,等等。实际上,数学历来都在帮助教育当局甄别哪些学生应该得到社会的报酬这一点上起到重要的作用。在某种程度上,数学水平和能力的不同决定了一个人将来从事的职业和发展前景。在未来世界中,求职和晋升的最好机会将提供给那些有信心应付数学的人,作为科学和技术的基础,数学提供通向成功的钥匙。信息时代就是数学的时代,正如未来的科学家和工程师需要广泛的数学一样,未来的公民将需要极其多样的数学,以对付工作中大量以数学为基础的工具、设备和技术。当学生离开学校并进入工作生涯时,数学极大地决定了一个人能从事什么样的工作与不能从事什么样的工作。
在世界上所有的国家中,中小学的数学课程内容较为一致,具有突出的相似性。具体地说,各国选取的数学课程内容与社会的需求、数学的发展以及学生的发展密切相关。数学在课程中占据中心位置,在不同的国家或文化中,没有任何一门其它学科的教育时间有数学这样长。我们很少看到数学学得好而其它学科学得不好的学生。在中学里很少有这样的情况,即某个学生在数学上是第一名,而在其它学科上却属于最差的行列。反之,那些所谓“差生”,往往首先就是数学没有学好,数学对于这些学生而言竟然成了“筛子”。筛掉了他们的就业机会,筛掉了他们的发展机会。数学真正成了打开通向未来的大门,每个人的发展都依赖于数学教育的成功。在所有文明中,一代又一代的儿童学习数学以获得更加美好的生活。
3、对数学教育的启示
在数学课程改革的背景下,我们为什么要学习数学?数学对学生的发展意味着什么?数学到底要塑造学生什么?数学到底能塑造学生什么?这些问题看似平凡,实则非凡;看似简单,实则复杂;看似浅显,实则深远。其实,每个问题都是我们教育工作者必须弄清的数学教育哲学的基本问题。事实表明,无论是从人类文明的发展来看,还是从学生个人的发展来说,数学是一个不容忽视的意义的领域。数学是人类最高超的智力成就,是人类心灵最独特的创造,是人类文明的核心部分。数学是了解世界及其发展的主要钥匙之一。作为人类文明发展标志的数学,在人的发展中扮演着重要的角色。数学已成为个人参与社会的基本条件,每个人都需要学习数学。数学应该走进学生的生活世界,成为每个学生生活的组成部分,激发他们对生活的热爱,体现更多的人文关怀。数学应该促进学生的发展,震撼学生心灵,培养学生的好奇心,体现数学的文化价值。数学应该发展学生的能力,体现数学的思维价值。数学应该培养学生对美的追求,体现数学的艺术价值。从而,数学教学不是把数学各个领域的片段知识灌输给学生,不是把数学作为一个封闭系统,从那些完美的数学结论开始,而是从学生熟悉的现实生活、已有的数学经验开始,把数学作为一项人类的基本活动。应该少些强制,少些令人厌恶的机械训练。让学生思考!思考!再思考!教师不是为考试而教,学生不是为考试而学。数学不是无意义的符号,数学不是无意义的公式游戏,数学不是无意义的运算和推理。数学是一个意义的领域,数学并非虚无飘渺,其中萌动着思想的生命。今天,数学教育中的种种困惑与迷茫,都与数学意义的失落密切相关。走向意义的数学教育是时代的呼唤。在这里,数学意义不是一个逻辑概念,而是被理解为生命的表现。数学意义不是从文本中提炼出来的,而是从对话中创造出来的。数学意义蕴涵在运算和推理中,蕴涵在每一个数学概念的学习中,蕴涵在每一个数学定理的探究中,蕴涵在每一个数学问题的研究中。走向意义的数学教育要给每一个学生一片阳光,唤醒他们的心灵,成为学生难忘的人生经历。它让学生领略现代数学思想中令人鼓舞的概念,像夏天喝冰水那样令人清新。它让学生欣赏数学,感受数学定理与数学概念的美妙,像艺术那样令人振奋。它让学生发现优美定理、概念的形成过程创造出更有内涵、更有意义的数学文化,像呼吸那样顺乎自然。在数学教育中,当做题、考试、成绩成为数学教育关注的焦点时,数学就变成了一种无意义的诸多公式、定义、过程的罗列,数学意义——无论是科学意义还是教育意义——就离我们远去。然而,远离了意义的数学教育,也就从根本上远离了学生的生活。从而将数学知识局限于认识论的窠臼,片面强调数学知识的客观性、抽象性和确定性,遮蔽了数学知识所蕴涵的意义世界。所以,数学教育必须超越抽象的世界、符号的世界、逻辑的世界、知识的世界、绝对真理的世界以及升学工具的世界,迈向意义的世界。可以说,回归数学意义是每一个数学教育工作者神圣的使命。走向意义的数学教育理所当然应该成为新的教育方向,新的教育追求。
的确,在数学中有一部分的内容看起来比没有太多的联系,像三角函数、数列、向量、等等。但是即便如此为什么很多的国家仍然设立数学学科,而且还是必修课
那么为什么我们国家对数学如此的重视?从中国的数学历史中可以了解到。
纵观中国数学的发展可以说是历史悠久,传承古今。不难发现在历史的长河中数学是不可缺少的一个学科。现如今更是筛选人才的一门学科,无论是从小学到高考,甚至在各大招聘企业的笔试中也都会有所涉及。
中国数学起源于上古至西汉末期,中国数学的全盛时期是隋中叶至元后期。接下来在元后期至清中期,中国数学的发展缓慢。就在中国数学发展缓慢的时候,西方数学已大跨步超前,于是在中国数学发展史上出现了一个中西数学发展的合流期,这一时期约为公元1840年~1911年之间。近代数学的开端主要集中在公元1911年~1949年这一时期。
我们不难发现在生活的日常中,数学的运用是如此的普遍,比如九九乘法表,我们从小就熟烂于心,在我们平时购物、算账的时候,可用性极大;统计学、概率学、以及三角函数在我们很多的领域都有着不可代替的用途。
数学作为一门基础学科,对于其他的学科来说是一个不可缺少的工具。数学从科学研究到我们日常运用;都扮演着不可代替的角色,在经济金融、计算机等学科更是尤其重要。
数学的应用
1:数学是一门运算工具
我们从儿时就开始接触数学,应用数学,很多学科都是基于数学发展的。比如物理、化学、以后大家选择的专业也都会和数学多少有关系的。
2:数学的思维锻炼
众所周知数学是严谨的,有着很强的逻辑性。学习数学也可以培养学生的理性思维,养成严谨思考的习惯。这对一个人在以后的生活和工作都起着重要的的作用。
3:时代应用的需要
无论是在古代还是当今的社会,数学都是如此的重要。从张衡、刘徽、祖冲之、梅文鼎、到华罗庚、陈建功、林家翘;数学在当前的时代中都起到重要的作用甚至改变了大局。
数学改变了我们思考方式
日本数学家米山国藏说:“作为知识的数学,出校门不过两年就可以忘了。唯有深深铭记在头脑中的数学精神、数学思路、研究方法和着眼点等,这些随时随地发生作用,使他们终生受益”
是的!在现实的生活中也许我们不能随时随地的运用三角函数、数列等比、空间向量;但是数学的思维方式会一直的伴随你的左右,数学更多的是教会我们如何思考。
中国数学发展史
在中国古代数学发展史中,我们的数学思想一直是领先多年,以下是我国数学历史发展的事迹。
(1)十进位制记数法和零的采用。源于春秋时代,早于第二发明者印度1000多年。
(2)二进位制思想起源。源于《周易》中的八卦法,早于第二发明者德国数学家莱布尼兹(公元1646~1716)2000多年。
(3)几何思想起源。源于战国时期墨翟的《墨经》,早于第二发明者欧几里德(公元前330~前275)100多年。
(4)勾股定理(商高定理)。发明者商高(西周人),早于第二发明者毕达哥拉斯(公元前580~前500)550多年。
(5)幻方。我国最早记载幻方法的是春秋时代的《论语》和《书经》,而在国外,幻方的出现在公元2世纪,我国早于国外600多年。
(6)分数运算法则和小数。中国完整的分数运算法则出现在《九章算术》中,它的传本至迟在公元1世纪已出现。印度在公元7世纪才出现了同样的法则,并被认为是此法的“鼻祖”。我国早于印度500多年。
中国运用最小公倍数的时间则早于西方1200年。运用小数的时间,早于西方1100多年。
(7)负数的发现。这个发现最早见于《九章算术》,这一发现早于印度600多年,早于西方1600多年。
(8)盈不是术。又名双假位法。最早见于《九章算术》中的第七章。在世界上,直到13世纪,才在欧洲出现了同样的方法,比中国晚了1200多年。
(9)方程术。最早出现于《九章算术》中,其中解联立一次方程组方法,早于印度600多年,早于欧洲1500多年。在用矩阵排列法解线性方程组方面,我国要比世界其他国家早1800多年。
(10)最精确的圆周率“祖率”。早于世界其他国家1000多年。
(11)等积原理。又名“祖暅”原理。保持世界纪录1100多年。
(12)二次内插法。隋朝天文学家刘焯最早发明,早于“世界亚军”牛顿(公元1642~1727)1000多年。
(13)增乘开方法。在现代数学中又名“霍纳法”。我国宋代数学家贾宪最早发明于11世纪,比英国数学家霍纳(公元1786~1837)提出的时间早800年左右。
(14)杨辉三角。实际上是一个二项展开式系数表。它本是贾宪创造的,见于他著作《黄帝九章算法细草》中,后此书流失,南宋人杨辉在他的《详解九章算法》中又编此表,故名“杨辉三角”。
在世界上除了中国的贾宪、杨辉,第二个发明者是法国的数学家帕斯卡(公元1623~1662),他的发明时间是1653年,比贾宪晚了近600年。
(15)中国剩余定理。实际上就是解联立一次同余式的方法。这个方法最早见于《孙子算经》,1801年德国数学家高斯(公元1777~1855)在《算术探究》中提出这一解法,西方人以为这个方法是世界第一,称之为“高斯定理”,但后来发现,它比中国晚1500多年,因此为其正名为“中国剩余定理”。
(16)数字高次方程方法,又名“天元术”。金元年间,我国数学家李冶发明设未知数的方程法,并巧妙地把它表达在筹算中。这个方法早于世界其他国家300年以上,为以后出现的多元高次方程解法打下很好的基础。
(17)招差术。也就是高阶等差级数求和方法。从北宋起中国就有不少数学家研究这个问题,到了元代,朱世杰首先发明了招差术,使这一总是得以解决。世界上,比朱世杰晚近400年之后,牛顿才获得了同样的公式。
所以学习数学不仅仅是为了考试
更是锻炼自己的逻辑思维
思考能力
所以请大家认真对待数学
它将会是会伴随你的一生
数学学不好,剁手都比别人出血多
双十一已经过去接近半个月了,相信不少多剁手党的快递已经收到了。在今年的双十一活动过程中想必大家也发现商家的各种优惠五花八门,一个不小心就少得到部分优惠,悔恨万分。
曾经听到很多人抱怨,想当年中高考学了那么多知识,有多少我们工作用到了?尤其是数学,经常听人说“学那些复杂的数列,几何,函数,生活中有什么用?我会简单计算,平时买个东西,会算钱就够了呀!!!”。毕竟语文可以让我们理解文章,平时刷新闻,刷微博都有用处,英语多了一门语言,可以看看外国的时政消息,出个国旅游简单交流没问题。但是数学,我们真的掌握了能计算买东西不吃亏的程度么?
一直有一个经典的数学题:
有3个人去投宿,一晚30元,三个人每人掏了10元凑够30元交给了老板,后来老板说今天优惠只要25元就够了,拿出5元命令服务生退还给他们,服务生偷偷藏起了2元,然后,把剩下的3元钱分给了那三个人,每人分到1元,这样,一开始每人掏了10元,现在又退回1元,也就是10-1=9,每人只花了9元钱,3个人每人9元,3 X 9= 27元 +服务生藏起的2元=29元,还有一元钱去了哪里???
大部分人看完题目的第一反应想必都是:对啊,怎么会少呢?
这里就涉及到数学计算,我们花钱也好,收钱也好,想不吃亏,数学总要算的好吧。
今天小编就遇到双十一货优惠活动二送一,结果缺货退换货的问题。淘宝客服建议没货的物品退款,重新拍等值得货物。小编退款结束发现,虽然货物是等值的,但是由于当时有各种减免优惠实付款是小于货物价格的,我的退款金额,不够支付购买相同价位的货物。和卖家沟通补我差价,沟通了一个下午的时间,卖家坚持货物是等值的,不存在我多付钱的问题。因为其中涉及到二送一优惠价格计算,和我重新购买的计算,卖家客服用官方计算公式算出的结果是:没有差别,一度以为小编在胡搅蛮缠。
最终客服人员在我列出几种不同的计算方式得到的都是有差额的情况下,卖家终于理清了问题所在,顺利达成一致协议。
如果小编的计算思路和逻辑和客服一样不清不楚的话,小编会莫名奇妙的比别人多出血。
所以数学也很重要啊,不只是加减法,还要会理清各种价格的关系,这些关系是多年学习数学练习出来的逻辑性,理不清,就会得出上面题目的结果。
所以数学很重要,重要到我们以后会剁几双手。
我们在学习一样东西的时候(比如数学),其实我们最后真正得到的是两个层面的东西。 第一个层面是这个学科非常具体的内容,比如数学公式、解题技巧。这类东西通常可以被写在教科书上,也容易用语言描述出来,我们可以称之为“显性知识”。 第二个层面是在学习这个学科的过程中带给我们的影响或者顺带学到的一些思维方式、思维习惯或者其他一些微妙而隐晦的东西。这类东西一般很难用语言表述出来,甚至很多人在掌握这些知识、习惯之后,自己并不会意识到自己已经“学会了”它们。这类知识,我们一般可以称之为“隐性知识”。 比如,在科学史上,古希腊哲学家泰勒斯的一句“万物源于水”被认为是早期科学诞生的重要标志之一。但是我们知道万物源于水这句话实际上在科学上并不正确。那为什么他的话还会流传至今呢?原因在于,虽然这句话在显性知识层面上不正确,然而这句话背后却隐含着这样一种思维逻辑:即人类第一次对世界的规律的问题做了从自然自身寻找答案的尝试,而不是简单地将其托付于超自然力的原因,这一点正是科学的核心思想之一。而这个隐性知识实际上对当时认可这句话的人们起的作用远比其显性知识来得作用要大。虽然这句话本身是错的,确使接受这句话的人在以后的问题中会更倾向于使用非神秘主义的方法来认识这个世界,科学也由此逐渐在人类文明中诞生。 由此可见,显性知识的运用往往是有条件、有范围的,而隐性知识虽然不容易被发现和察觉,但其作用和影响却可以作用于人的一生、乃至整个人类文明的发展轨迹。 回到你的问题,数学本身给我们带来的显性知识可能对于大多数不从事理工专业技术工作的人来说可能没有什么直接作用。就像韩寒曾经说的那样,我们生活中用到的数学估计到小学三年级就已经够用了。然而在之后我们多年来学习的数学,实际上塑造了我们一种理性的、条理的、系统化的思维方式。这种思维方式在我们解决自己一生中遇到的诸多问题时,都有非常重要的作用。比如慎密的思考、分类的思想、排序的思想等。很多东西其实都带有学习数学这个过程产生的影响,只是由于其作用方式非常隐晦,也不容易被追溯其源头,我们平时不容易注意到罢了。 因此对于平时工作不使用数学的人来说,真正学到,有益的的是那些隐形而非显性知识,而正是这些隐形知识将极大地影响我们在一生中做出的许多关键的抉择。
一、在认知心理学里,思想方法属于元认知范畴,数学思想对认知活动起着监控、调节作用,对培养能力起着决定性的作用。学习数学的目的“就意味着解题”(波利亚语),解题的关键在于找到合适的解题思路,数学思想方法就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的元认知水平,是培养学生分析问题和解决问题能力的重要途径。
二、 数学知识本身是非常重要的,但它并不是惟一的决定因素,真正对学生以后的学习、生活和工作长期起作用,并使其终生受益的是数学思想方法。未来社会需要大量具有较强数学意识和数学素质的人才。因此,向学生渗透一些基本的数学思想方法,是未来社会的要求和国际数学教育发展的必然结果。
三、 小学数学教材是数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到结论,许多例题的解法也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括和探索推理的心智活动过程。因此,数学思想方法是数学教学的隐性知识系统,小学数学教学应包括显性和隐性两方面知识的教学。教师如果在教学中仅仅依照课本的安排,沿袭着从概念、公式到例题、练习这一传统的教学过程,即使讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型”、“记忆型”的,将完全背离数学教育的目标。
四、小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个坐标系,那么数学知识、技能就好比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横两个维度上把握数学学科的基本结构,而且必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破。
五、 小学数学中蕴含的数学思想方法很多,最基本的数学思想方法有转化思想、类比思想、统计思想、符号思想、模型化思想、对应思想等,突出这些基本思想方法,就相当于抓住了小学数学知识的精髓。