采用反推过来的算法:
5号表决时,形成的状态是:
1得到0个宝石,死
2得到0个宝石,死
3得到0个宝石,死
4得到0个宝石,死
5得到100个宝石,活,同意
原因:
不用讲了,能轮到5号表决当然他独吞了
但是也会与题目违背了,因为前面几个海盗都是傻瓜差不多
4号表决时,形成的状态是:
1得到0个宝石,死
2得到0个宝石,死
3得到0个宝石,死
4得到100个宝石,活,同意
5得到0个宝石,活,不同意
原因:
这时只剩下二比一的情况,只要自己同意即可达到半数而通过表决,不存在生命危险
但是3号也不是白痴
3号表决时,形成的状态是:
1得到0个宝石,死
2得到0个宝石,死
3得到99个宝石,活,同意
4得到0个宝石,活,不同意
5得到1个宝石,活,同意
轮到3号时,他只要给5号1个宝石就够了
原因:
因为5号会意识到,一旦轮到4号时他就一个也得不到,现在能得到1个宝石已经是给了面子了
但2号也很聪明的,能否轮到他只是一种期待,来看看2号的情况
2号表决时,形成的状态是:
1得到0个宝石,死
2得到99个宝石,活,同意
3得到0个宝石,活,不同意
4得到1个宝石,活,同意
5得到0个宝石,活,不同意
要是轮到此海盗他必会拿走99颗宝石,然后给4号1颗即可!
为什么? 原因是:
4号已经意识到,要是轮到3号表决时,他将一个也得不到,所以这时有点收获,固然同意了
这时也考虑到:
3号不可巴结,会损失太多,因为如果只是单单给3号的话,他随时都可以不同意而获得表决权
5号也可巴结,但需要2颗宝石,不合算,因为5号也知道即使下一轮也是拿定一颗宝石的
1号:此海盗当然也聪明了
从上述看出,既然轮到2号的局势已定,那他早已知道后面的海盗心里想什么了
也就是简单的说,他们清楚认识到,轮到2号时,3号和5号得不到宝石!
那么这样的话,事情就好办多了,给他们一人一颗自然就搞定了!
所以,1海海盗毅然作出决定,分别给3号和5号各1颗宝石
最终结局的状态是:
1得到98个宝石,活,同意
2得到 0个宝石,活,不同意
3得到 1个宝石,活,同意
4得到 0个宝石,活,不同意
5得到 1个宝石,活,同意
即:98,0,1,0,1 (达到1号利益最大化)
5号表决时,形成的状态是:
1得到0个宝石,死
2得到0个宝石,死
3得到0个宝石,死
4得到0个宝石,死
5得到100个宝石,活,同意
4号表决时,形成的状态是:
1得到0个宝石,死
2得到0个宝石,死
3得到0个宝石,死
4得到100个宝石,活,同意
5得到0个宝石,活,不同意
3号表决时,形成的状态是:
1得到0个宝石,死
2得到0个宝石,死
3得到99个宝石,活,同意
4得到0个宝石,活,不同意
5得到1个宝石,活,同意
轮到3号时,他只要给5号1个宝石就
2号表决时,形成的状态是:
1得到0个宝石,死
2得到99个宝石,活,同意
3得到0个宝石,活,不同意
4得到1个宝石,活,同意
5得到0个宝石,活,不同意
要是轮到此海盗他必会拿走99颗宝石,然后给4号1颗即可!
为什么? 原因是:
4号已经意识到,要是轮到3号表决时,他将一个也得不到,所以这时有点收获,固然同意了
这时也考虑到:
3号不可巴结,会损失太多,因为如果只是单单给3号的话,他随时都可以不同意而获得表决权
5号也可巴结,但需要2颗宝石,不合算,因为5号也知道即使下一轮也是拿定一颗宝石的
1号:此海盗当然也聪明了
从上述看出,既然轮到2号的局势已定,那他早已知道后面的海盗心里想什么了
也就是简单的说,他们清楚认识到,轮到2号时,3号和5号得不到宝石!
那么这样的话,事情就好办多了,给他们一人一颗自然就搞定了!
所以,1海海盗毅然作出决定,分别给3号和5号各1颗宝石
最终结局的状态是:
1得到98个宝石,活,同意
2得到 0个宝石,活,不同意
3得到 1个宝石,活,同意
4得到 0个宝石,活,不同意
5得到 1个宝石,活,同意
即:98,0,1,0,1 (达到1号利益最大化)
11
他们3个分,其余俩个不给