为什么要引进虚数

2024-11-17 02:40:43
推荐回答(2个)
回答1:

为了计算负数的开方。在数学里有意义,在自然界无意义。 要追溯出现的轨迹,就要联系与它相对实数的出现过程。我们知道,实数是与虚数相对应的,它包括有理数和无理数,也就是说它是实实在在存在的数。 有理数出现的非常早,它是伴随人们的生产实践而产生的。 无理数的发现,应该归功于古希腊毕达哥拉斯学派。无理数的出现,与德谟克利特的“原子论”发生矛盾。根据这一理论,任何两个线段的比,不过是它们所含原子数目的经。而勾股定理却说明了存在着不可通约的线段。 不可通约线段的存在,使古希腊的数学家感到左右为难,因为他们的学说中只有整数和分数的概念,他们不能完全表示正方形对角线与边长的比,也就是说,在他们那里,正方形对角线与连长的比不能用任何“数”来表示。 西亚他们已经发同了无理数这个问题,但是却又让它从自己的身边悄悄溜走了,甚至到了希腊最伟大的代数学家丢番图那里,方程的无理数解仍然被称为是“不可能的”。 无理数的确定与开方运算息息相关。对于那些非完全平方数,人们发现它们的平方根是可以无限制地求到任意多位的无限不循环小数。(像π=3.141592625…,E=2。71828182…等),称为无理数。 但是当无理数的位置确定后,人们又发现即使使用全部的有理数和无是数,也不能长度解决代数方程的求解问题。像x 2+1=0这样最简单的二次方程,在褛范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负根的存在。 到了16世纪,卡尔达诺的<大衍术>第一次大胆使用了负数平方根的概念。如果不使用负数平方根,就是可能决四次方程的求解问题。虽然他写出院负数的平方根,但他却犹豫不次,他不得不声明,这个表达式是虚构的,想像的,并么一次称它为”虚数”但是数学家们使用它时,还是非常小心谨慎,就连著名的数学家欧拉在使用虚数时也不得不给自己的论文加上一个评语。一切形如√-1,√-2的数学式,都是不可能有的、想像的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么。它们线性虚幻。虽然大师的这段话读起来有些拗口,但从中可以看出他他和虚数时也不那么理直气壮。 可是虚数的出现,却帮了无理数的大忙,无理数和有理数相比,底气显得有些不足,但是在虚数面前,它和有理数一样,都是实实在在的数所以数学家才把它同有理数合称为实数,这样就可以和虚数区别开来。有趣的是,虚数也非常顽强,它就如同实数在镜子里的映像一样,不仅同实数形影不离,而且还常常同实数结合起来,构成复数。 虚数,人们开始称之为“实数的鬼魂”,1637年笛卡儿称为“想像中的数”,于是一切虚数都具有BI,而复数则具有a=bi,这里a和b都是实数。虚数也常称为纯虚数。 从卡尔达诺的<大衍术>开始,在200年的时间里,虚数一直披着一层神秘莫测、不可思议的面纱,到了1797年,威赛尔给出了虚线的图像表示,才确立了虚数的合理地位。他和阿尔干一起借助于17世纪法国数学家笛卡儿建立的平面坐标系,给复数做了一是到数学界认要的几何解释。后来,高斯使直角坐标平面上的点和复数建立了一一对应的关系,虚数才广为人知。

回答2:

用来计算负数的开方。
负数没有实平方根,所以判别式小于0的二次方程无解.
为解决这个问题,首先引入复数的是数学家卡尔达诺.他把纯虚数表示为根号负数.事实上,他也觉得很矛盾.一方面,他觉得虚数是虚幻的,构造的,“什么也没有”,但是又“比什么也没有多一点东西”.
当年,数学家引入复数并没有过于高深的目的,但是,复数的引入却导致了数学乃至自然科学的巨大进步.引入复数后,所有的多项式方程都有解,于是任何一个多项式都可以分解为一次因式的乘积.其次,复数引入之后就给复分析创造了条件.许多原来只定义在实数上的函数可以定义在复数上,如ζ函数,然后扩充定义之后ζ函数又反过来推出许多定理,比如素数定理.又例如,物理上用复数处理电学问题,霍金也用复数表示时间.