计算(1+1⼀2)(1+1⼀2^2)(1+1⼀2^4)(1+1⼀2^6)(1+1⼀2^8)+1⼀2^15

2025-01-07 04:17:21
推荐回答(3个)
回答1:

您好:

(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^6)(1+1/2^8)+1/2^15
=2*(1-1/2)(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^6)(1+1/2^8)+1/2^15
=2*(1-1/2^2)(1+1/2^2)(1+1/2^4)(1+1/2^6)(1+1/2^8)+1/2^15
=...
=2*(1-1/2^16)+1/2^15
=2-1/2^15+1/2^15
=2

如果本题有什么不明白可以追问,如果满意记得采纳
如果有其他问题请另发或点击向我求助,答题不易,请谅解,谢谢。

祝学习进步!

回答2:

(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15

=(1-1/2)(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)/(1-1/2)+1/2^15
=(1-1/2^2)(1+1/2^2)(1+1/2^4)(1+1/2^8)*2+1/2^15
=(1-1/2^4)(1+1/2^4)(1+1/2^8)*2+1/2^15
=(1-1/2^8)(1+1/2^8)*2+1/2^15
=(1-1/2^16)*2+1/2^15
=2-1/2^15+1/2^15
=2

回答3:

在 最前面 乘 (1-1/2) 最后 再 乘 2