计算定积分:上限1⼀2 下限0 根号(1-x^2)dx

求详细过程
2024-11-07 20:51:12
推荐回答(5个)
回答1:

答案为√3/8+π/12

解题过程如下:

令x=sinΘ

dx=cosΘdΘ

x=1/2,Θ=π/6

x=0,Θ=0

原式=∫(π/6,0)cosΘ*cosΘdΘ

=∫(π/6,0)(1+cos2Θ)/2*1/2d(2Θ)

=1/4*(sin2Θ+2Θ)|(π/6,0)

=√3/8+π/12

定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。

这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!

扩展资料

定理

一般定理

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

牛顿-莱布尼茨公式

定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。

回答2:

令x=sinΘ

dx=cosΘdΘ

x=1/2,Θ=π/6

x=0,Θ=0

原式=∫(π/6,0)cosΘ*cosΘdΘ

=∫(π/6,0)(1+cos2Θ)/2*1/2d(2Θ)

=1/4*(sin2Θ+2Θ)|(π/6,0)

=√3/8+π/12

扩展资料:

根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

回答3:

令x=sinΘ
dx=cosΘdΘ
x=1/2,Θ=π/6
x=0,Θ=0
原式=∫(π/6,0)cosΘ*cosΘdΘ
=∫(π/6,0)(1+cos2Θ)/2*1/2d(2Θ)
=1/4*(sin2Θ+2Θ)|(π/6,0)
=√3/8+π/12

很高兴为您解答,祝你学习进步!【学习宝典】团队为您答题。
有不明白的可以追问!如果您认可我的回答。
请点击下面的【选为满意回答】按钮,谢谢!

回答4:

令x=sina
dx=cosada
x=1/2,a=π/6
x=0,a=0
原式=∫(0,π/6)cosa*cosada
=∫(0,π/6)(1+cos2a)/2*1/2d(2a)

=1/4*(sin2a+2a)(0,π/6)
=√3/8+π/12

回答5:

课本上有公式