用分部积分法求ln【x+√(x눀+1)】dx

2024-12-01 00:28:07
推荐回答(2个)
回答1:

解答:
令x=tant,则
原式=∫ln(tant+sect)dtant
=tant*In(tant+sect)-∫tantsectd
=tant*In(tant+sect)-∫dsect
=tant*In(tant+sect)-sect
=x*ln(x+√(1+x²))-√(1+x²)+C.

回答2:

原式=xln(x+√(x^2+1))-∫x*1/(x+√(x^2+1))*(1+1/2*1/√(x^2+1)*2x)dx=xln(x+√(x^2+1))-∫x/√(x^2+1)dx=xln(x+√(x^2+1))-1/2∫d(x^2+1)/√(x^2+1)=xln(x+√(x^2+1))-√(x^2+1)+C