解:∵ρ=lim(n→∞)丨an+1/an丨=lim(n→∞)[n/(n+1)]^n=1/e,∴收敛半径R=1/ρ=e。 又lim(n→∞)丨Un+1/Un丨=丨x丨/R<1,∴丨x丨 而当x=e时,lim((n→∞)an→√(2πn)→∞,发散;当x=-e时,lim((n→∞)an→[(-1)^n]√(2πn),是交错级数,不满足莱布尼兹判别法条件,发散。 ∴收敛区间为-e 供参考。