z=f(√(x^2+y^2))
设u=√(x^2+y^2). u'x=x/u u'y=y/u
1.z'x= f'(u)x/u, z''xx=[uf'(u)-x^2f'(u)/u+x^2f''(u)]/u^2
z'x= f'(u)y/u, z''yy=[uf'(u)-y^2f'(u)/u+y^2f''(u)]/u^2
由于z''xx+z''yy=0
0=[uf'(u)-x^2f'(u)/u+x^2f''(u)]/u^2+[uf'(u)-y^2f'(u)/u+y^2f''(u)]/u^2
=f''(u)-f'(u)/u
2.f''(u)-f'(u)/u=0,解为:f'(u)=Cu
由f'(1)=1,C=1 f'(u)=u ,f(u)=u^2/2+C, f(1)=0,C=-1/2
所以:f(u)=u^2/2-1/2