解:
∫f(x)dx=sinx
f '(x)=cosx
f ''(x)=-sinx
所以∫x²f ''(x) dx
=∫x²(-sinx) dx
=x²cosx-∫2xcosxdx
=x²cosx-[2xsinx-∫2sinxdx]
=x²cosx-2xsinx-2cosx+C
f(x) =∫ sinx dx
= -cosx + C
f'(x) = sinx
f''(x) = cosx
∫ x^2f''(x)dx
=∫ x^2cosx dx
=∫ x^2 dsinx
=x^2sinx - 2∫x sinx dx
= x^2sinx + 2∫x dcosx
=x^2sinx + 2xcosx - 2∫ cosxdx
=x^2sinx + 2xcosx - 2sinx + C