隐函数求导,得到的导数y'的表达式中有时含有y,此时不需要变换成x,可以直接用y来表示。
对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。
隐函数导数的求解一般可以采用以下方法:
先把隐函数转化成显函数,再利用显函数求导的方法求导;隐函数左右两边对x求导(但要注意把y看作x的函数); 利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值; 把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z) = 0的形式,然后通过(式中F'yF'x分别表示y和x对z的偏导数)来求解。