证明:在AB上取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠BAD=∠CAD∵AD=AD,AE=AC∴△AED≌△ACD (SAS)∴DE=CD,∠AED=∠C∵∠C=2∠B∴∠AED=2∠B∵∠AED=∠B+∠BDE∴∠BDE=∠B∴DE=BE∴BE=CD∵AB=AE+BE∴AB=AC+CD