对数据做一些变换的目的是它能够让它符合我们所做的假设,使我们能够在已有理论上对其分析。
对数变换(log transformation)是特殊的一种数据变换方式,它可以将一类我们理论上未解决的模型问题转化为已经解决的问题。我将说两类比较有代表性的模型。
理论上:随着自变量的增加,因变量的方差也增大的模型。
先给个很经典的例子,如分析美国每月电力生产数。
左边是正常数据,可以看到随着时间推进,电力生产也变得方差越来越大,即越来越不稳定。这种情况下常有的分析假设经常就不会满足(误差服从独立同分布的正态分布,时间序列要求平稳)。
这必然导致我们寻求一种方式让数据尽量满足假设,让方差恒定,即让波动相对稳定。而这种目的可以通过对数转换做到。
理论上,我们将这类问题抽象成这种模型,即分布的标准差与其均值线性相关。
from:http://www.zhihu.com/question/22012482