f'(x)=x+2a(a+1)/x-(3a+1)
1. 在x=1处的切线与直线y-3x=0平行, k=3
1+2a^2+2a-3a-3=3
2a^2-a-5=0
a=(1+√41)/4或a=(1-√41)/4 (舍)
2. f'(x)=[x^2-(3a+1)x+2a(a+1)]/x
=(x-2a)(x-(a+1))/x
(1) 2a>a+1 a>1 增区间(0,a+1)(2a,+无穷)
减区间(a+1,2a)
(2) a=1 f'(x)>=0恒成立 增区间(0,+无穷)
(3) 2a 增区间(0,2a)(a+1,+无穷)
减区间(2a,a+1)