1.分部积分:
∫e^3x*cos2xdx=1/2∫e^3x*dsin2x=1/2e^3x*sin2x-1/2∫sin2xde^3x*
=1/2e^3x*sin2x-3/2∫e^3x*sin2xdx=1/2e^3x*sin2x-3/2(-1/2∫e^3x*dcos2x)
=1/2e^3x*sin2x+3/4(e^3x*cos2x-3∫e^3x*cos2xdx),移项得:
∫e^3x*cos2xdx=4/13(1/2e^3x*sin2x+3/4e^3x*cos2x)+C
2. ∫coslnxdx=xcoslnx-∫xdcoslnx=xcoslnx+∫sinlnxdx,对这个积分再作分部积分,移项就行
有事,先下
∫ e^(3x)cos(2x) dx
= (1/2)∫ e^(3x) dsin(2x)
= (1/2)e^(3x)sin(2x) - (1/2)(3)∫ e^(3x)sin(2x) dx
= (1/2)e^(3x)sin(2x) - (3/2)(- 1/2)∫ e^(3x) dcos(2x)
= (1/2)e^(3x)sin(2x) + (3/4)e^(3x)cos(2x) - (3/4)(3)∫ e^(3x)cos(2x) dx
(1 + 9/4)∫ e^(3x)cos(2x) dx = (1/4)e^(3x)(2sin2x + 3cos2x)
∫ e^(3x)cos(2x) dx = (1/13)[2sin(2x) + 3cos(2x)]e^(3x) + C
∫ cos(lnx) dx = ∫ xcos(lnx) · 1/x dx
= ∫ xcos(lnx) d(lnx) = ∫ x dsin(lnx)
= xsin(lnx) - ∫ sin(lnx) dx
= xsin(lnx) - ∫ xsin(lnx) d(lnx)
= xsin(lnx) + ∫ x dcos(lnx)
= xsin(lnx) + xcos(lnx) - ∫ cos(lnx) dx
2∫ cos(lnx) dx = x[sin(lnx) + cos(lnx)]
∫ cos(lnx) dx = (x/2)[sin(lnx) + cos(lnx)] + C