如图,在梯形ABCD中,AD平行于BC,角C=90°,E为CD的中点,EF平行于AB于点F,求证:BF=AD+CF

当AD=1,BC=7,且BE平分∠ABC时求EF的长
2024-12-02 13:06:56
推荐回答(2个)
回答1:

1.证明:
延长FE交AD于G
∵AD//BC
∴∠G=∠EFC,∠GDE=∠C
又∵DE=CE【E为CD的中点】
∴⊿DEG≌⊿CEF(AAS)
∴DG=CF
∵AD//BC,AB//EF
∴四边形ABFG是平行四边形
∴BF=AG
∵AG=AD+DG=AD+CF
∴BF=AD+CF
2.解:
取AB中点H,连接EH
则EH是梯形ABCD的中位线
∴EH=½(AD+BC)=½(1+7)=4
EH//BC
∵EF//AB
∴四边形HBFE是平行四边形
∴BF=HE
∵EF//AB
∴∠BEF=∠ABE
∵BE平分∠ABC
∴∠ABE=∠EBC
∴∠BEF=∠EBC
∴EF=BF=4

回答2:

解:∵EF∥BC交AB于F,EG∥AB交BC于G,
∴四边形BGEF是平行四边形,
∵BE平分∠ABC且交CD于E,
∴∠FBE=∠EBC,
∵EF∥BC,
∴∠EBC=∠FEB,
∴∠FBE=FEB,
∴四边形BGEF是菱形,
∵E为CD的中点,EF∥BC,AD=2,BC=12,
∴EF是梯形ABCD的中位线,
∴EF=1/2(AD+BC)=1/2×(2+12)=7,
∴四边形BGEF的周长=4×7=28.