飞机发动机工作原理

2024-11-22 03:34:15
推荐回答(5个)
回答1:

一、战斗机涡扇喷气发动机的工作原理现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是连续进行的,气体依次流经喷气发动机的各个部分,就对应着活塞式发动机的四个工作位置。

空气首先进入的是发动机的进气道,当飞机飞行时,可以看作气流以飞行速度流向发动机,由于飞机飞行的速度是变化的,而压气机适应的来流速度是有一定的范围的,因而进气道的功能就是通过可调管道,将来流调整为合适的速度。在超音速飞行时,在进气道前和进气道内气流速度减至亚音速,此时气流的滞止可使压力升高十几倍甚至几十倍,大大超过压气机中的压力提高倍数,因而产生了单靠速度冲压,不需压气机的冲压喷气发动机。

进气道后的压气机是专门用来提高气流的压力的,空气流过压气机时,压气机工作叶片对气流做功,使气流的压力,温度升高。在亚音速时,压气机是气流增压的主要部件。

从燃烧室流出的高温高压燃气,流过同压气机装在同一条轴上的涡轮。燃气的部分内能在涡轮中膨胀转化为机械能,带动压气机旋转,在涡轮喷气发动机中,气流在涡轮中膨胀所做的功正好等于压气机压缩空气所消耗的功以及传动附件克服摩擦所需的功。经过燃烧后,涡轮前的燃气能量大大增加,因而在涡轮中的膨胀比远小于压气机中的压缩比,涡轮出口处的压力和温度都比压气机进口高很多,发动机的推力就是这一部分燃气的能量而来的。

从涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速沿发动机轴向从喷口向后排出。这一速度比气流进入发动机的速度大得多,使发动机获得了反作用的推力。

一般来讲,当气流从燃烧室出来时的温度越高,输入的能量就越大,发动机的推力也就越大。但是,由于涡轮材料等的限制,目前只能达到1650K左右,现代战斗机有时需要短时间增加推力,就在涡轮后再加上一个加力燃烧室喷入燃油,让未充分燃烧的燃气与喷入的燃油混合再次燃烧,由于加力燃烧室内无旋转部件,温度可达2000K,可使发动机的推力增加至1.5倍左右。其缺点就是油耗急剧加大,同时过高的温度也影响发动机的寿命,因此发动机开加力一般是有时限的,低空不过十几秒,多用于起飞或战斗时,在高空则可开较长的时间。

随着航空燃气涡轮技术的进步,人们在涡轮喷气发动机的基础上,又发展了多种喷气发动机,如根据增压技术的不同,有冲压发动机和脉动发动机;根据能量输出的不同,有涡轮风扇发动机、涡轮螺旋桨发动机、涡轮轴发动机和螺桨风扇发动机等。

喷气发动机尽管在低速时油耗要大于活塞式发动机,但其优异的高速性能使其迅速取代了后者,成为航空发动机的主流二、航天火箭发动机迄今为止,人类从事的最神奇的事业就是太空探索了。它的神奇之处很大程度上是因为它的复杂性。太空探索是非常复杂的,因为其中有太多的问题需要解决,有太多的障碍需要克服。所面临的问题包括: 太空的真空环境 热量处理问题 重返大气层的难题 轨道力学 微小陨石和太空碎片 宇宙辐射和太阳辐射 在无重力环境下为卫生设施提供后勤保障 但在所有这些问题中,最重要的还是如何产生足够的能量使太空船飞离地面。于是火箭发动机应运而生。 一方面,火箭发动机是如此简单,您完全可以自行制造和发射火箭模型,所需的成本极低(有关详细信息,请参见本文最后一页上的链接)。而另一方面,火箭发动机(及其燃料系统)又是如此复杂,目前只有三个国家曾将自己的宇航员送入轨道。在本文中,我们将对火箭发动机进行探讨,以了解它们的工作原理以及一些与之相关的复杂问题。 火箭发动机基本原理
火箭发动机工作原理
当大多数人想到马达或发动机时,会认为它们与旋转有关。例如,汽车里的往复式汽油发动机会产生转动能量以驱动车轮。电动马达产生的转动能量则用来驱动风扇或转动磁盘。蒸汽发动机也用来完成同样的工作,蒸汽轮机和大多数燃气轮机也是如此。 火箭发动机则与之有着根本的区别。它是一种反作用力式发动机。火箭发动机是以一条著名的牛顿定律作为基本驱动原理的,该定律认为“每个作用力都有一个大小相等、方向相反的反作用力”。火箭发动机向一个方向抛射物质,结果会获得另一个方向的反作用力。

回答2:

航空发动机推进系统按其组成和工作原理可分为两大类:直接反作用推进系统和间接反作用推进系统。一、直接反作用推进系统:发动机直接将工质加速产生反作用推力,属于这类的航空发动机有涡轮喷气发动机、涡轮风扇发动机和冲压喷气发动机;二、间接反作用推进系统:发动机只将燃料燃烧产生的化学 能转换成有效功率,以轴功率形式输出,推理则要靠专门的推进器产生。推进器有飞机的螺旋桨和直升机的旋翼。属于这类的反动机有活塞式、涡轮螺旋桨、浆扇和涡轮轴发动机,航空电动机。航空发动机又可以分为活塞式发动机和空气喷气式发动机两大类。空气发动机又可分为带压气机的燃气涡轮发动机和不到压气机的冲压发动机。现在航空发动机主要又以喷气式发动机应用最为广泛, 喷气式发动机是一个总称 它包含很多种 在航天领域 主要使用的是冲压喷气发动机 和 涡轮喷气发动机冲压发动机由进气道(也称扩压器)、燃烧室、推进喷管三部组成,比涡轮喷气发动机简单得多。冲压是利用迎面气流进入发动机后减速、提高静压的过程。这一过程不需要高速旋转的复杂的压气机,是冲压喷气发动机最大的优势所在。进气速度为3倍音速时,理论上可使空气压力提高37倍,效率很高。高速气流经扩张减速,气压和温度升高后,进入燃烧室与燃油混合燃烧。燃烧后温度为2000一2200℃,甚至更高,经膨胀加速,由喷口高速排出,产生推力。因此,冲压发动机的推力与进气速度有关。以3倍音速进气时,在地面产生的静推力可高达2OO千牛。
冲压喷气发动机目前分为亚音速、超音速、高超音速三类。亚音速冲压发动机以航空煤油为燃料,采用扩散形进气道和收敛形喷管,飞行时增压比不超过1.89。马赫数小于O.5时一般无法工作。超音速冲压发动机采用超音速进气道,燃烧室入口为亚音速气流,采用收敛形或收敛扩散形喷管。用航空煤油或烃类作为燃料。推进速度为亚音速~6倍音速,用于超音速靶机和地对空导弹。高超音速冲压发动机使用碳氢燃料或液氢燃料,是一种新颖的发动机,飞行马赫数高达5~16。目前尚处于研制阶段。前两类发动机统称为亚音速冲压发动机,最后一种称为超音速冲压发动机。 我们现在做飞机看到的一般都是后者 涡轮喷气发动机 1930年,英国人弗兰克·惠特尔获得了燃气涡轮发动机专利,这是第一个具有实用性的喷气发动机设计。11年后他设计的发动机首次飞行,从而成为了涡轮喷气发动机的鼻祖。
涡轮喷气发动机的原理

涡轮喷气发动机简称涡喷发动机,通常由进气道、压气机、燃烧室、涡轮和尾喷管组成。部分军用发动机的涡轮和尾喷管间还有加力燃烧室。
涡喷发动机属于热机,做功原则同样为:高压下输入能量,低压下释放能量。
工作时,发动机首先从进气道吸入空气。这一过程并不是简单的开个进气道即可,由于飞行速度是变化的,而压气机对进气速度有严格要求,因而进气道必需可以将进气速度控制在合适的范围。 压气机顾名思义,用于提高吸入的空气的的压力。压气机主要为扇叶形式,叶片转动对气流做功,使气流的压力、温度升高。随后高压气流进入燃烧室。燃烧室的燃油喷嘴射出油料,与空气混合后点火,产生高温高压燃气,向后排出。
高温高压燃气向后流过高温涡轮,部分内能在涡轮中膨胀转化为机械能,驱动涡轮旋转。由于高温涡轮同压气机装在同一条轴上,因此也驱动压气机旋转,从而反复的压缩吸入的空气。
从高温涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速从尾部喷口向后排出。这一速度比气流进入发动机的速度大得多,从而产生了对发动机的反作用推力,驱使飞机向前飞行。

回答3:

飞机引擎的发动原理:
汽车在高速公路上定速行驶於平坦路面上所消耗的汽油,主要都是用来克服空气阻力。在空中飞行的飞机同样承受阻力,因此飞机必须有「推进系统」,否则阻力将使飞机愈来愈慢终至坠毁。飞机的推进系统常见的有「往复式内燃机」和「涡轮引擎」二类。
「往复式内燃机」是最传统的飞机动力源,莱特兄弟的第一架飞机就是采用四冲程的内燃机。通常是使用螺旋桨把往复式内燃机的输出马力转变成推进力。「涡轮引擎」可分为 :「涡轮喷射」、「涡轮扇喷射」和「涡轮轴引擎」三大类。
往复式内燃机和汽车、机车使用者的原理相同,除了模型飞机之外,绝少使用二冲程引擎者。四冲程引擎分为进气、压缩、爆炸、排气四个冲程,其原理在今日已成常识,不多说明。「涡轮引擎」由前面吸入空气,经由压缩器增压之后,即将油与气混合并於燃烧室引燃。燃烧后的高温排气流经涡轮产生转动的力量,此力量经过传动轴去驱动压缩器。此时排气仍含有甚多热能,即经由喷嘴高速喷出,依反作用定律产生推力。上述为「涡轮喷射引擎」。
扇式喷射是把压缩器或涡轮叶片延长成为类似较短的螺旋桨叶片。压缩器叶片延长者叫作前扇式,涡轮叶片延长者叫作后扇式。

回答4:

航空发动机工作原理,共有3种类型:
活塞式航空发动机
是早期在飞机或直升机上应用的航空发动机,用于带动螺旋桨或旋翼。大型活塞式航空发动机的功率可达2500千瓦。后来为功率大、高速性能好的燃气涡轮发动机所取代。但小功率的活塞式航空发动机仍广泛地用于轻型飞机、直升机及超轻型飞机。
燃气涡轮发动机
这种发动机应用最广。包括涡轮喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机和涡轮轴发动机,都具有压气机、燃烧室和燃气涡轮。涡轮螺旋桨发动机主要用于时速小于800千米的飞机;涡轮轴发动机主要用作直升机的动力;涡轮风扇发动机主要用于速度更高的飞机;涡轮喷气发动机主要用于超音速飞机。
冲压发动机
其特点是无压气机和燃气涡轮,进入燃烧室的空气利用高速飞行时的冲压作用增压。它构造简单、推力
大,特别适用于高速高空飞行。由于不能自行起动和低速下性能欠佳,限制了应用范围,仅用在导弹和空中发射的靶弹上。
其他
上述发动机均由大气中吸取空气作为燃料燃烧的氧化剂,故又称吸空气发动机。其他还有火箭发动机、脉冲发动机和航空电动机。火箭发动机的推进剂(氧化剂和燃烧剂)全部由自身携带,燃料消耗太大,不适于长时间工作,一般作为运载火箭的发动机,在飞机上仅用于短时间加速(如起动加速器)。脉冲发动机主要用于低速靶机和航空模型飞机。由太阳电池驱动的航空电动机仅用于轻型飞机,尚处在试验阶段。

回答5:

涡轮增压器实际上是一种空气压缩机,通过压缩空气来增加进气量。它是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入汽缸。当发动机转速增快,废气排出速度与涡轮转速也同步增快,叶轮就压缩更多的空气进入汽缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量和调整一下发动机的转速,就可以增加发动机的输出功率了。
扇发动机是喷气发动机的一个分支,从血缘关系上来说涡扇发动机应该算得上是涡喷发动机的小弟弟.从结构上看,涡扇发动机只不过是在涡喷发动机之前(之后)加装了风扇而已.然而正是这区区的几页风扇把涡喷发动机与涡扇发动机严格的区分开来.涡扇发动机这个"小弟弟"仗着自已身上的几页风扇也青出于蓝.

现代的军用战斗机要求越来越高的机动性能,较高的推重比能赋予战斗机很高的垂直机动能力和优异的水平加速性能.而且在战时,如果本方机场遭到了对方破坏,战斗机还可以利用大推力来减少飞机的起飞着陆距离.比如装备了f-100-pw-100的f-15a当已方机机的跑道遭到部分破坏时,f-15可以开全加力以不到300米的起飞滑跑距离起飞.在降落时可以用60度的迎角作低速平飞,在不用减速伞和反推力的情况下,只要500米的跑道就可以安全降落.

更高的推重比是每一个战斗机飞行员所梦寐以求的.但战斗机的推重比在很大和度上是受发动机所限--如果飞机发动机的推重比小于6一级的话,其飞机的空战推重比就很难达到1,如果强行提高飞机的推重比的话所设计的飞机将在航程、武器挂载、机体强度上付出相当大的代价.比如前苏联设计的苏-11战斗机使用了推重比为4.085的ал-7ф-1-100涡喷发动机.为了使飞机的推重比达到1,苏-11的动力装置重量占了飞机起飞重量的26.1%.相应的代价是飞机的作战半径只有300公里左右.

而在民用客机、运输机和军用的轰炸机、运输机方面.随着新材料的运用飞机的机身结构作的越来越大,起飞重量也就越来越大,对发动机的推力要求也越来越高.在高函道比大推力的涡扇发动机出现之前,人们只能采用让大型飞机挂更多的发动机的方法来解决发动机的推力不足问题.比如b-52g轰炸机的翼下就挂了八台j-57-p-43w涡喷发动机.该发动机的单台最大起飞推力仅为6237公斤(喷水).如果b-52晚几年出生的话它完全可以不挂那么多的发动机.在现在如果不考虑动力系统的可靠性,像b-52之类的飞机只装一台发动机也未尝不可.