原式=(1+1/2)(1-1/2)*(1+1/3)(1-1/3)*(1+1/4)(1-1/4)...(1+1/10)(1-1/10)
=(3/2)(1/2)*(4/3)(2/3)*(5/4)(3/4)...(11/10)(9/10)
中间抵消.得
原式=(1/2)*(11/10)=11/20
(1-1/n^2)=(n+1)*(n-1)/n^2;
所以 (1-1/n^2)*(1-1/(n+1)^2=[(n+1)*(n-1)/n^2]*[(n+2)*n/(n+1)^2]=(n-1)*(n+2)/[n*(n+1)];
此式 可用此法 相消
(1-1/2²)(1-1/3²)(1-1/4²)…(1-1/10²)
=(1-1/2)×(1+1/2)×(1-1/3)×(1+1/3)×……×(1-1/10)×(1+1/10)
=1/2×3/2×2/3×4/3×……×11/10
=1/2×11/10
=11/20