六年级上册奥数题五十道 带答案 是奥数题 难得 题不能让那个太长 好的话我再给一百财富值

2024-11-04 07:29:47
推荐回答(3个)
回答1:

1.一项工程,甲单独做12天可以完成.如果甲单独做3天,余下工作由乙去做,乙再用6天可以做完.问若甲单独做6天,余下工作乙要做几天?

  2.一条水渠,甲乙两队合挖30天完工.现在合挖12天后,剩下的由乙队挖,又用24天挖完.这条水渠由乙单独挖,需要多少天?

  3.客车与货车同时从甲、乙两站相对开出,经2小时24分钟相遇,相遇时客车比货车多行9.6千米.已知客车从甲站到乙站行4小时30分钟,求客车与货车的速度各是多少?

  4.水箱上装有甲、乙两个注水管.单开甲管20分钟可以注满全箱.现

满水箱?

  5.一项工程,甲、乙单独做分别需要18天和27天.如果甲做若干天后,乙接着做,共用20天完成.求甲乙完成工作量之比.

  7.做一批儿童玩具.甲组单独做10天完成,乙组单独做12天完成,丙组每天可生产64件.如果让甲、乙两组合作4天,则还有256件没完成.现在决定三个组合做这批玩具,需要多少天完成?

1.一块长方形的地,长和宽的比是3∶2,长比宽多24米,这块地的面积是多少平方米?

  2.一块长方形的地,长和宽的比是3∶2,长方形的周长是120米,求这块地的面积?

  3.水果店运来橘子、苹果共96筐,橘子和苹果筐数的比是5∶3,求橘子、苹果各是多少筐?

  4.化肥厂计划生产化肥1400吨,由于改进技术5天就完成了计划的25%,照这样计算,剩下的任务还需多少天完成?

  5.小强买了一件上衣和两条裤子,小明买了同样价钱的上衣和裤子各一件,他们用去钱数的比是4∶3,已知一件上衣7元,求一条裤子多少元?

  页,这时已读的页数与剩下页数的比是3∶7,小刚再读多少页就能读完这本书?

  7.甲、乙两车由A、B两地同时出发相向而行,甲乙两车速度比是2∶

  8.“长江”号轮船第一次顺流航行21公里又逆流航行4公里,第二次在同一河流中顺流航行12公里,逆流航行7公里,结果两次所用的时间相等.求顺水船速与逆水船速的比.

第一讲 工程问题

  工程问题是应用题中的一种类型.在工程问题中,一般要出现三个量:工作总量、工作时间(完成工作总量所需的时间)和工作效率(单位时间内完成的工作量).

  这三个量之间有下述一些关系式:

  工作效率×工作时间=工作总量,

  工作总量÷工作时间=工作效率,

  工作总量÷工作效率=工作时间.

  为叙述方便,把这三个量简称工量、工时和工效.

  例1 一项工程,甲乙两队合作需12天完成,乙丙两队合作需15天完成,甲丙两队合作需20天完成,如果由甲乙丙三队合作需几天完成?

  

   

  答:甲、乙、丙三队合作需10天完成.

  说明:我们通常把工量“一项工程”看成一个单位.这样,工效就用工

  例2 师徒二人合作生产一批零件,6天可以完成任务.师傅先做5天批零件各需几天?

  工效和.要求每人单独做各需几天,首先要求出各自的工效,关键在于把师傅先做5天,接着徒弟做3天转化为师徒二人合作3天,师傅再做2天.

  

  答:如果单独做,师傅需10天,徒弟需15天.

  例3 一项工程,甲单独完成需12天,乙单独完成需9天.若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?

  分析 解答工程问题时,除了用一般的算术方法解答外,还可以根据题目的条件,找到等量关系,列方程解题。

  解:设甲做了x天.那么,

  

  两边同乘36,得到:3x+40-4x=36,

                x=4.

  答:甲做了4天.

  例4 一件工作甲先做6小时,乙接着做12小时可以完成.甲先做8小时,乙接着做6小时也可以完成.如果甲做3小时后由乙接着做,还需要多少小时完成?

  分析 设一件工作为单位“1”.甲做6小时,乙再做12小时完成或者甲先做8小时,乙再做6小时都可完成,用图表示它们的关系如下:

  由图不难看出甲2小时工作量=乙6小时工作量,∴甲1小时工作量=乙3小时工作量.可用代换方法求解问题.

  解:若由乙单独做共需几小时:

  6×3+12=30(小时).

  若由甲单独做需几小时:

  8+6÷3=10(小时).

  甲先做3小时后乙接着做还需几小时:

  (10-3)× 3=21(小时).

  答:乙还需21小时完成.

  例5 筑路队预计30天修一条公路.先由18人修12天只完成全部工程

之几(即一人的工效).

  解:①1人1天完成全部工程的几分之几(即一人的工效):

    

    ②剩余工作量若要提前6天完成共需多少人:

    

    =36(人).

    ③需增加几人:

    36-18=18(人).

  答:还要增加18人.

  例6 蓄水池有一条进水管和一条排水管.要灌满一池水,单开进水管需5小时.排光一池水,单开排水管需3小时.现在池内有半池水,如果按进水,排水,进水,排水…的顺序轮流各开1小时.问:多长时间后水池的水刚好排完?(精确到分钟)

  分析与解答 ①在解答“水管注水”问题时,会出现一个进水管,一个出水管的情况.若进水管、出水管同时开放,则积满水的时间=1÷(进水管工效-出水管工效),

  排空水的时间=1÷(出水管工效-进水管工效).

  ②这道应用题是分析推理与计算相结合的题目.根据已知条件推出水池

好排完.

  一半,最后余下的部分由甲、乙合作,还需要多少时间才能完成?

  分析 这道题是工程问题与分数应用题的复合题.解题时先要分别求出甲、乙工作效率,再把余下的工作量转化为占单位“1”(总工作量)的几分之几?

  

  如果二人一起干,完成任务时乙比甲多植树36棵,这批树一共多少棵?

  分析 求这批树一共多少棵,必须找出与36棵所对应的甲、乙工效

=4∶3,所以甲与乙的工效比是3∶4.这个间接条件一旦揭示出来,问题就得到解决了.

  甲与乙的时间比是4∶3.

  工作总量一定,工作效率和工作时间成反比例,所以甲与乙的工效比是时间比的反比,为3∶4.

  

  答:这批树一共252棵.

  例9 加工一批零件,甲、乙合作24天可以完成.现在由甲先做16天,

个零件,求这批零件共多少个?

  分析 欲求这批零件共多少个,由题中条件只需知道甲、乙二人每天共做多少个即可,然后这就转化为求甲、乙两人单独做各需多少天,有了这个结论后,只需算出3个零件相当于总数的几分之几即可.由条件知甲做16

甲单独做所用天数可求出,那么乙单独做所用天数也就迎刃而解.

  解:甲、乙合作12天,完成了总工程的几分之几?

    

  甲1天能完成全工程的几分之几?

    

  乙1天可完成全工程的几分之几?

    

  这批零件共多少个?

    

  答:这批零件共360个.

  例10 一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,…,两人如此交替工作,问完成任务时,共用了多少小时?

  分析 要求共用多少小时?可以设想把这些小时重新分配:甲做1小时,乙做1小时,它们相当于合作1小时,也即是每2小时,相当于合做1小时.这样先大致算一下一共进行了多少个这样的2小时,余下部分问题就好解决了.

  解:①若甲、乙两人合作共需多少小时?

    

    ②甲、乙两人各单独做7小时后,还剩多少?

    

    

    

    ④共用了多少小时?

    

   
第二讲 比和比例

  在应用题的各种类型中,有一类与数量之间的(正、反)比例关系有关.在解答这类应用题时,我们需要对题中各个量之间的关系作出正确的判断.

  成正比或反比的量中都有两种相关联的量.一种量(记作x)变化时另一种量(记作y)也随着变化.与这两个量联系着,有一个不变的量(记为k).在判断变量x与y是否成正、反比例时,我们要紧紧抓住这个不变量k.如成正比例;如果k是y与x的积,即在x变化时,y与x的积不变:xy=k,那么y与x成反比例.如果这两个关系式都不成立,那么y与x不成(正和反)比例.

  下面我们从最基本的判断两种量是否成比例的例题开始.

  例1 下列各题中的两种量是否成比例?成什么比例?

  ①速度一定,路程与时间.

  ②路程一定,速度与时间.

  ③路程一定,已走的路程与未走的路程.

  ④总时间一定,要制造的零件总数和制造每个零件所用的时间.

  ⑤总产量一定,亩产量和播种面积.

  ⑥整除情况下被除数一定,除数和商.

  ⑦同时同地,竿高和影长.

  ⑧半径一定,圆心角的度数和扇形面积.

  ⑨两个齿轮啮合转动时转速和齿数.

  ⑩圆的半径和面积.

  (11)长方体体积一定,底面积和高.

  (12)正方形的边长和它的面积.

  (13)乘公共汽车的站数和票价.

  (14)房间面积一定,每块地板砖的面积与用砖的块数.

  (15)汽车行驶时每公里的耗油量一定,所行驶的距离和耗油总量.

  分析 以上每题都是两种相关联的量,一种量变化,另一种量也随着变化,那么怎样来确定这两种量成哪种比例或不成比例呢?关键是能否把两个两种形式,或只能写出加减法关系,那么这两种量就不成比例.例如①×零件数=总时间,总时间一定,制造每个零件用的时间与要制造的零件总数成反比例.③路程一定,已走的路程和未走的路程是加减法关系,不成比例.

  解:成正比例的有:①、⑦、⑧、(15)

    成反比例的有:②、④、⑤、⑥、⑨、(11)、(14)

    不成比例的有:③、⑩、(12)、(13).

  例2 一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间之比依次是4∶5∶6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间?

  分析 要求此人走完全程用了多少时间,必须根据已知条件先求出此人走上坡路用了多少时间,必须知道走上坡路的速度(题中每小时行3千米)和上坡路的路程,已知全程60千米,又知道上坡、平路、下坡三段路程比是1∶2∶3,就可以求出上坡路的路程.

  解:上坡路的路程:

    

  走上坡路用的时间:

    

  上坡路所用时间与全程所用时间比:

    

  走完全程所用时间:

    

  

  例3 一块合金内铜和锌的比是2∶3,现在再加入6克锌,共得新合金36克,求新合金内铜和锌的比?

  分析 要求新合金内铜和锌的比,必须分别求出新合金内铜和锌各自的重量.应该注意到铜和锌的比是2∶3时,合金的重量不是36克,而是(36-6)克.铜的重量始终没有变.

  解:铜和锌的比是2∶3时,合金重量:

  36-6=30(克).

  铜的重量:

  

  新合金中锌的重量:

  36-12=24(克).

  新合金内铜和锌的比:

  12∶24=1∶2.

  答:新合金内铜和锌的比是1∶2.

  例4 师徒两人共加工零件168个,师傅加工一个零件用5分钟,徒弟加工一个零件用9分钟,完成任务时,两人各加工零件多少个?

工作量与工作效率成正比例.

  解法1:设师傅加工x个,徒弟加工(168-x)个.

    

      5x=168×9-9x,

      14x=168×9,

       x=108.

    168-x=168-108=60(个).

  答:师傅加工108个,徒弟加工60个.

  

  =60(个),(徒弟).

  

  考方法可求出两人各用了多少分钟.然后用师、徒每分钟各自的效率,分别乘以540就是各自加工零件的个数.

  

  解法4:按比例分配做:

   

  例5 洗衣机厂计划20天生产洗衣机1600台,生产5天后由于改进技术,效率提高25%,完成计划还要多少天?

  分析 这是一道比例应用题,工效和工时是变量,不变量是计划生产5天后剩下的台数.从工效看,有原来的效率1600÷20=80台/天,又有提高后的效率 80×(1+25%)=100台/天.从时间看,有原来计划的天数,要求效率提高后还需要的天数.

  根据工效和工时成反比例的关系,得:

  提高后的效率×所需天数=剩下的台数.

  解法1:设完成计划还需x天.

  1600÷20×(1+25%)×x=1600-1600÷20×5

        80×1.25×x=1600-400

            100x=1200

              x=12.

  答:完成计划还需12天.

  解法2:此题还可以转化成正比例.根据实际效率是原来效率的1+25因为工效和工时成反比例,所以实际与原来所需时间的比是4∶5,如果设实际还需要x天,原来计划的天数是20-5=15天,根据实际与原来时间的比等于实际天数与原来天数的比,可以用正比例解答.设完成计划还需x天.

  

  5x=60,

   x=12.

  解法3:(按工程问题解)设完成计划还需x天.

      

  例6 一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?

  画出图便于解题:

  解法1:BC的长:182÷13=14(厘米),

      BD的长:14+13=27(厘米),

  从图中看出AB长就是原长方形的宽,AD与AB的比是14∶5,

  AB与BD的比是5∶(14-5)=5∶9,

  

  原长方形面积是42×15=630(平方厘米).

  答:原长方形面积是630平方厘米.

  解法2:设原长方形长为14x,宽为5x.由图分析得方程

  (14x-13)× 13-5x×13=182,

             

             9x=27,

              x=3.

  则原长方形面积

  (14×3)×(5×3)=630(平方厘米).

  例4、例5、例6是综合性较强的题,介绍了几种不同解法.要求大家从不同角度、综合、灵活运用所学知识,多角度去思考解答应用题,从而提高自己思维判断能力.

第三讲 分数、百分数应用题(一)

  分数、百分数应用题是小学数学的重要内容,也是小学数学重点和难点之一.一方面它是在整数应用题基础上的继续和深化;另一方面,它有其本身的特点和解题规律.因此,在这类问题中,数量之间以及“量”、“率”之间的相依关系与整数应用题比较,就显得较为复杂,这就给正确地选择解题方法,正确解答带来一定困难.

  为了学好分数、百分数应用题的解法必须做好以下几方面工作.

  ①具备整数应用题的解题能力.解答整数应用题的基础知识,如概念、性质、法则、公式等仍广泛用于分数、百分数应用题.

  ②在理解、掌握分数的意义和性质的前提下灵活运用.

  ③学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件.它可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理.

  ④学会多角度、多侧面思考问题的方法.分数百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,在寻找正确的解题方法同时,不断地开拓解题思路.

  例1 (1)本月用水量比上月节约7%,可以联想到哪些关系?

  ①上月用水量与单位“1”的关系.

  ②本月节约用水量与上月用水量的7%的关系.

  ③本月用水量与上月用水量的(1-7%)的关系.

  (2)蓝墨水比红墨水多20%,可以联想到哪些关系?

  ①红墨水与单位“1”的关系.

  ②蓝墨水比红墨水多出的量与红墨水的20%的关系.

  ③蓝墨水与红墨水的(1+ 20%)的关系.

  (3)已看的页数比未看的页数多15%,可以联想哪些关系?

  ①未看的页数与单位“1”的关系.

  ②已看的与未看的页数的差与未看页数的15%的关系.

  ③已看的页数与未看的页数的(1+15%)的关系.

  事书是多少页?

  分析 每天看15页,4天看了15×4=60页.解题的关键是要找出

  解:①看了多少页?

     15×4=60(页).

    ②看了全书的几分之几?

     

    ③这本书有多少页?

     

  答:这本故事书是 150页.

  分析 要想求这本书共有多少页,需要找条件里的多21页,少6页,剩下 172页所对应的百分率.也就是说,要从这三个量里找出一个能明确占全书的几分之几的量.

  画线段图:

 

  

  答:这本故事书共有264页.

  例4 惠华百货商场运到一批春秋西服,按原(出厂)价加上运费、营知售价是123元,求出厂价多少元?

  相当于123元,

  如上图可以得出解答:

  

  答:春秋西服每套出厂价是108元.

  克,收完其余部分时,又刚好装满6筐,求共收西红柿多少千克?

  

  与百分率”的关系已经直接对应,求每筐的千克数的条件完全具备.

  解:其余部分是总千克数的几分之几:

  

  西红柿总数共装了多少筐:

  

  

  每筐是多少千克:

  

  共收西红柿多少千克:

  

  综合算式:

  

  答:共收西红柿384千克.

  解法2:(以下列式由学生自己理解)

   

  答:共收西红柿384千克.

  水泥没运走.这批水泥共是多少吨?

  分析 上图中有3个相对各自讨论范围内的单位“1”(“全部”、“余下”、“又余下”).依据逆向思路可以得出,最后剩下的15吨对应的是下”的吨数90吨(即“余下”含义中的1个单位是90吨).这90吨恰是“全

  

  例7 某人在公共汽车上发现一个小偷向相反方向步行,10秒钟后他秒?

  分析与解答 这是一个追及问题,因此求追上所花时间必须求出相距距离及它们速度差.相距距离是因为车上之人与小偷反向走了10秒钟产生的.而速度差是易求的.

  

  所以追上所花时间是

  

  答:追上小偷要110秒.

  例8 A有若干本书,B借走一半加一本,剩下的书,C借走一半加两本,再剩下的书,D借走一半加3本,最后A还有2本书,问A原有多少本书.

  
  

           

  答:A原有50本书.

  解法2:用倒推法解.

  分析 A剩下的2本应是C借走后剩下的一半差3本,所以 C借走后还

  综合算式:

  

  答:A原有50本书.

第四讲 分数、百分数应用题(二)

  在解题过程中,除了要利用上一讲中所说的一些技巧和方法(如画线段示意图等)之外,还要注意在解题过程中量的转化.例如,在解题过程的不同阶段,有时需把不同的量看成单位1,即要把单位1进行“转化”;有时,在解题过程中需把相等的量看成完全一样,即其中之一可“转化”为另一.通过这样的转化,往往能使解题思路清晰,计算简便.

  几?

  而问题“女工人数比男工人数少几分之几”是把男工人数看作单位“1”.解答这题必须转化单位“1”.

  

  说明:“1”倍量的转换引起了“百分率”的转化,其规律是,甲数是

  修路程的比是4∶3,还剩50O米没修,这条路全长多少米?

  分析 此题条件中既有百分率又有比,可以把比转化成百分率,按分数应用题解答.

  第二天与第一天所修路程的比是4∶3.即第二天修的占4份,第一天

米相对应的百分率,进而求出全长有多少米.

  

  =1200(米).

  答:全长是1200米.

  相等,求两个班各分到多少皮球?

回答2:

先给十道题
我国某城市煤气收费规定:每月用量在8立方米或8立方米以下都一律收6.9元,用量超过8立方米的除交6.9元外,超过部分每立方米按一定费用交费,某饭店1月份煤气费是82.26元,8月份煤气费是40.02元,又知道8月份煤气用量相当于1月份的,那么超过8立方米后,每立方米煤气应收多少元?0.48元
1、一个筑路队有13人,3天修路9.75千米,如果每人的工作效率不变,15人5天修路多少千米

  解答:9.75÷3÷13×15×5=18.75(千米)

  2、甲、乙两地的距离是496千米,一辆客车从甲地开往乙地,每小时行64千米,行驶1小时后,一辆货车从乙地开往甲地,每小时行56千米.货车开出几小时后与客车相遇?

  解答:(496-64)÷(64+56)=3.6(小时)
1. 一容器内有浓度为40%的糖水,若再加入20千克水与5千克糖,则糖水的浓度变为30%。这个容器内原来含有糖多少千克?

  解:实际上加入的是浓度为5/(20+5)×100%=20%的糖水,即用40%的糖水与20%的糖水混合得到30%的糖水。由此可知,原来40%的糖水也有25千克,所以原来含糖25×40%=10千克。

  2. 在下面的“□”中填上合适的运算符号,使等式成立:

  (1□9□9□2)×(1□9□9□2)×(19□9□2)=1992

  解:(1×9×9+2)×(1+9-9+2)×(19-9-2)

  =83×3×8

  =1992

  或(1×9×9+2)×(1×9÷9×2)×(19-9+2)

  =83×2×12

  =1992

  (本题答案不唯一,只要所填的符号能使等式成立,都是正确的)
阶梯教室座位有10排,每排有16个座位,当有150个人就坐时,某些排坐着的人数就一样多.我们希望人数一样的排数尽可能少,则相同人数的至少有 排.

  解:至少有4排.

  如果 排人数各不相同,那么这10排最多分别坐16、15、14、13、……、7人,则最多坐16+15+14+13+12+11+10+9+8+7=115

  (人);

  如果最多有2排人数相同,那么最多坐(16+15+14+13+12)×2=140 (人);

  如果最多有3排人数一样,那么最多坐(16+15+14)×3+13=148(人);

  如果最多有4排人数一样,那么最多坐(16+15)×4+14×2=152(人).

  由于148<150<152 ,所以只有3排人数一样的话将不可能坐下 150个人,相同人数的至少有4排.
甲、乙两所学校的学生中,有些学生互相认识.已知甲校的学生中任何一个人也认不全乙校的学生,乙校的任意两名学生都有甲校中的一个公共朋友.问:能否在甲校中找出两个学生A、B,从乙校中找出三个学生C、D、E,使得A认识C、D,不认识E,B认识D、E,不认识C?说明理由.(认识是相互的,即甲认识乙时,乙也认识甲).

  分析:如果选乙校学生中任意两个人为C、D,那么甲校中有认识C、D的人,设它为A.因为A认不全乙校学生,所以在乙校中有学生E,A不认识E.这时A认识C、D,不认识E.按这个思路,再考虑选B时有些麻烦.虽然对于乙校的D、E,可知甲校中有学生认识D、E,如果把甲校的这个认识D、E的人选为B.这个B可能认识C,这样就达不到题目要求了.之所以陷入上述困境,原因在于C、D在乙校中太"任意"了,在乙校中任选C、D,就可能使得最后甲校中的B选不出来,看来要选特殊一点的人.

  因为甲校学生都认不全乙校的学生,所以存在甲校的认识乙校学生数目最多的人(或认识乙校学生数目最多的人之一).选他为A.因为A认不全乙校学生,取A不认识的乙校的一名学生为E,设A认识的乙校的一名学生为D.

  对于D、E,在甲校中有一个人,设它为B,B认识D、E.因为B认识E,A不认识E,所以A、B不是同一个人.

  在A认识的乙校学生中,一定有B不认识的人,若不然,当A认识的乙校的任何一名学生都认识B时,B至少要比A多认识一个人E,这与"甲校学生中认识乙校人数最多的人之一是A"的假定矛盾.设在乙校中,学生C认识A而不认识B,这样就有:

  A认识C、D,不认识E,B认识D、E,不认识C.
把16只鸡分别装进5个笼子里,要使每个笼子里鸡的只数都不相同,应怎样装?请把每只笼子里的鸡的只数分别填入下面五个方框中。

  解答:从最小的数开始排列:1、2、3、4、5,和为15,还差一只。只有把最后一只放到第5个笼子里面才能保证每个笼子的数量都不一样,因此分别为:1、2、3、4、6。
1、一个水地装有进水管和出水管,单开进水管40分可以将空池注满;单开出水管1小时可把满油水放完.现同时打开两管,多少小时可将它池注满?

  解:1÷(1/40-1/60 )=120, 120分=2小时

  答:2小时可将它池注满.

  2、一架飞机从甲城飞往乙城,每分飞行12千米,26分飞完全程的30/13,全部航程是多少千米?

  解答:12×(26÷30/13)=780(千米)

回答3:

民以每分钟50米的速度从家走到学校,则迟到8分,他这样走了2分后,改用60米/分的速度前进,结果早到5分钟.小民家里学校多远?
设他走了X分钟
50X(x+8)=60x(x-5)+2x50
50x+400 =60x-200
x=60
50x(60+8)=3400米
在一次植树活动中,两个小组植树总数相同,均为100多棵。两组人数不等,一组一人植树5棵,其余植树13棵,二组一人植树4棵,其余10棵。两组共多少人?
根据题意,
每组种树的数量,除以13余5;除以10余4;
中国剩余定理问题。。。。

算术方法:
能被13整除,且除以10余4的最小数,为:13×8=104
能被10整除,且除以13余5的最小数,为:10×7=70
104+70=174
满足除以13余5;除以10余4;且为100多的数,就是174
两班各种了174棵
一组有:(174-5)÷13+1=14人
二组有:(174-4)÷10+1=18人
两组一共:14+18=32人

代数解法:
设一组x人,二组y人;x,y均为正整数
100<5+13(x-1)<200
100<4+10(y-1)<200

100<13x-8<200
100<10y-6<200

108<13x<208
106<10y<206

9≤x≤17
11≤x≤20

5+13(x-1)=4+10(y-1)
13x-8=10y-6
y=(13x-2)/10
y是整数,那么13x的个位数字为2
x的个位数字为4
满足要求的数为x=14
y=(13×14-2)/10=18
两组一共:14+18=32人
1、 一块牧场长满草,每天牧草都均匀生长.这片牧场可供10头牛吃20天,可供15头牛吃10天。问:可供25头牛吃多少天?
(10乘20-15乘10)除以(20-10)=5(份)
10乘20-20乘5=100(份)
100除以(25-5)=5(天)
2.(6*20-8*10)/(20-10)=4
(8-4)*10=40
40/5+4=12 台
3.甲容器有浓度4%的盐水150克,乙容器有某种浓度的盐水若干,从乙中取出450克盐水放入甲中混合成浓度8.2%的盐水,求乙的浓度?
混合后的甲容器中盐的质量=(150+450)*8.2%=49.2g
原来甲容器中盐的质量=150*4%=6g
那么乙容器中盐的质量=49.2-6=43.2g
则乙容器的盐水的浓度=43.2/450=9.6%