二次函数的通式是 y= ax+bx+c如果知道三个点 将三个点的坐标带入也就是说三个方程解三个未知数 如题方程一8=a2+b2+c 化简 8=c 也就是说c就是函数与Y轴的交点 方程二7=a×62+b×6+c 化简 7=36a+6b+c 方程三7=a×(-6)2+b×(-6)+c化简 7=36a-6b+c 解出abc 就可以了 上边这种是老老实实的解法 对(6,7)(-6,7)这两个坐标 可以求出一个对称轴也就是X=0 通过对称轴公式x=-b/2a 也可以算 如果知道过x轴的两个坐标(y=0的两个坐标的值叫做这个方程的两个根)也可以用对称轴公式x=-b/2a算 或者使用韦达定理 一元二次方程ax+bx+c=0 (a≠0 且△=b-4ac≥0)中 设两个根为X1和X2 则X1+X2= -b/a X1·X2=c/a
一般式
y=ax^2+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,4ac-b²/4a)
顶点式
y=a(x-h)^2+k(a≠0,a、h、k为常数),顶点坐标为(h,k)对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax^2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式
交点式
y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点A(x1,0)和 B(x2,0)的抛物线,即b2-4ac≥0] 由一般式变为交点式的步骤:
二次函数(16张) ∵X1+x2=-b/a x1·x2=c/a ∴y=ax^2+bx+c=a(x2+b/ax+c/a)=a[﹙x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2) 重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。
看书吧