利用中值定理:当x>0时,证明x⼀1+x<ln(x+1)<x成立

2024-11-15 18:26:00
推荐回答(1个)
回答1:

令f(x)=ln(x+1),g(x)=x,注意到f(0)=0,g(0)=0,则对任意x>0有
ln(x+1)/x=[f(x)-f(0)]/[g(x)-g(0)]=f'(s)/g'(s)=1/(1+s),0因为1/(1+x)<1/(1+s)<1
故1/(1+x)即x/(1+x)0
证毕!