证明:
因为3^n<1+2^n+3^n<3*3^n=3^(n+1),
那么(3^n)^(1/n)<(1+2^n+3^n)^(1/n)<(3^(n+1))^(1/n),
即3<(1+2^n+3^n)^(1/n)<3^((n+1)/n)。
又因为lim(x→∞)3^((n+1)/n)=3^1=3。
即当n→∞时,3<lim(x→∞)(1+2^n+3^n)^(1/n)<3
那么根据夹逼定理可得,lim(x→∞)(1+2^n+3^n)^(1/n)=3。
扩展资料:
夹逼定理的应用
1、设{Xn},{Zn}为收敛数列,且:当n趋于无穷大时,数列{Xn},{Zn}的极限均为:a。若存在N,使得当n>N时,都有Xn≤Yn≤Zn,则数列{Yn}收敛,且极限为a。
2、夹逼准则适用于求解无法直接用极限运算法则求极限的函数极限,间接通过求得F(x)和G(x)的极限来确定f(x)的极限。
不等式的证明方法
1、综合法
由因导果。证明不等式时,从已知的不等式及题设条件出发,运用不等式性质及适当变形推导出要证明的不等式. 合法又叫顺推证法或因导果法。
2、分析法
执果索因。证明不等式时,从待证命题出发,寻找使其成立的充分条件. 由于”分析法“证题书写不是太方便,所以有时我们可以利用分析法寻找证题的途径,然后用”综合法“进行表述。
3、放缩法
将不等式一侧适当的放大或缩小以达到证题目的,已知A
简单计算一下即可,答案如图所示
你好~~
当n→+∞时
(1+2^n+3^n)^1/n>(3^n)^1/n=3
(1+2^n+3^n)^1/n<(3^n+3^n)^1/n=[2•(3^n)]^1/n=[2^1/n]•(3^n)^1/n=3
∴(1+2^n+3^n)^1/n的极限是3
不明白的欢迎追问
如何用夹逼准则证 (1+2^n+3^n)^1/n 的极限为3
高等数学内容: 【夹逼定理在数列中的运用】 设{Xn},{Zn}为收敛数列,且:当n趋于无穷大时,数列{Xn},{Zn}的极限均为:a. 若存在N,使得当n>N时,都有limXn≤limYn≤limZn,则数列{Yn}收敛,且极限为a.