“包含”和“真包含”是集合与集合之间的关系,也叫子集和真子集关系。真包含首先是包含(前一集合的元素都是后一集合的元素)但后一集合存在不是前一集合的元素。
包含于”与“真包含于”都是数学集合的概念,二者的区别就在于前者是否是后者的真子集,前者是后者的真子集就是“真包含”;前者是后者的子集且可能与后者相等,则是“包含于”。
包含于号是用来表示一个集合是另一个集合的子集的记号。如A包含于B,表示集合A包含于集合B内,或A是B的子集的意思。
记作A_B。真包含于号是用来表示一个集合是另一个集合的真子集的记号。如A真包含于B,表示集合A真包含于集合B内,或A是B的真子集的意思。记作A_B。
包含和真包含是集合与集合之间的关系,也叫子集和真子集关系。
真子集和子集的区别:
子集就是一个集合中的全部元素是另一个集合中的元素,有可能与另一个集合相等;
真子集就是一个集合中的元素全部是另一个集合中的元素,但不存在相等。
拓展资料:
如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集。A是B的真子集
一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集(subset)。
记作: A⊆B(或B⊇A)
读作:“A包含于B”(“B包含A”)
而真子集是对于子集来说的
真子集定义:如果集合A⊆B,但存在元素X∈B,且元素X不属于集合A,我们称集合A是集合B的真子集。
也就是说如果集合A的所有元素同时都是集合 B 的元素,则称 A 是 B 的子集,
若 B 中有一个元素,而A 中没有,且A 是 B 的子集,则称 A 是 B 的真子集,
包含和真包含是集合与集合之间的关系,也叫子集和真子集关系。
真子集和子集的区别:
子集就是一个集合中的全部元素是另一个集合中的元素,有可能与另一个集合相等;
真子集就是一个集合中的元素全部是另一个集合中的元素,但不存在相等。
包含和真包含是集合与集合之间的关系,也叫子集和真子集关系。
真子集和子集的区别:
子集就是一个集合中的全部元素是另一个集合中的元素,有可能与另一个集合相等; 真子集就是一个集合中的元素全部是另一个集合中的元素,但不存在相等。
如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集。A是B的真子集 一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集(subset)。 记作: A⊆B(或B⊇A) 读作:“A包含于B”(“B包含A”) 而真子集是对于子集来说的。
真子集定义:如果集合A⊆B,但存在元素X∈B,且元素X不属于集合A,我们称集合A是集合B的真子集。 也就是说如果集合A的所有元素同时都是集合 B 的元素,则称 A 是 B 的子集, 若 B 中有一个元素,而A 中没有,且A 是 B 的子集,则称 A 是 B 的真子集,
A包含B有两种情况,一是A和B的外延全同,例如“北京”和“中华人民共和国首都”在外延上就是全同关系;二是A的外延大于B的外延,这种情况就是A真包含B,例如“动物”的外延大于“人”的外延,“动物”真包含“人”,因此,真包含是包含的一种情况。