数据分析师的前途何在?

数据分析师的前途何在?如题,做15年会怎么样?
2024-11-23 02:22:24
推荐回答(5个)
回答1:

数据分析是干什么的?

在企业里收集数据、计算数据、提供数据给其他部门使用的。

数据分析有什么用?

从工作流程的角度看,至少有5类分析经常做:

  • 工作开始前策划型分析:要分析一下哪些事情值得的做

  • 工作开始前预测型分析:预测一下目前走势,预计效果

  • 工作中的监控型分析:监控指标走势,发现问题

  • 工作中的原因型分析:分析问题原因,找到对策

  • 工作后的复盘型分析:积累经验,总结教训

  • 请点击输入图片描述

    那数据分析是什么的?

    数据分析大体上分3步:
    1:获取数据。通过埋点获取用户行为数据,通过数据同步,打通内部各系统数据。以及做数仓建设,存储数据。
    2:计算数据。根据分析要求,提取所需要的数据,计算数据,做表。
    3:解释数据。解读数据含义,推导出一些对业务有用的结论。

    那么数据分析师主要做以上三点的工作吗?

    并不全是,这个在不同企业,情况不一样。如果公司规模大的话,获取数据经常是数据开发组完成的,他们的职位一般是“数据开发工程师”或者“大数据工程师”。解释数据则是运营自己写ppt做解读,留给“数据分析师”的,其实就是中间的计算数据的一步。

    有些公司(一般是做电商的),数据是直接从淘宝、天猫、亚马逊等平台导出的,然后基于这些数据做分析。有些公司(一般是传统企业),数据是直接用的大型的BI产品,然后所有人基于BI产品导出数据分析有些公司规模很小,就直接一个小组从数据埋点到数仓到提数全干了。

    请点击输入图片描述

回答2:

1、数据分析师通常分两类,分工不同,但各有优势。
一类是在专门的挖掘团队里面从事数据挖掘和分析工作的。如果你能在这类专业团队学习成长,那是幸运的,但进入这类团队的门槛较高,需要扎实的数据挖掘知识、挖掘工具应用经验和编程能力。该类分析师更偏向技术线条,未来的职业通道可能走专家的技术路线。
另一类是下沉到各业务团队或者运营部门的数据分析师,成为业务团队的一员。他们工作是支撑业务运营,包括日常业务的异常监控、客户和市场研究、参与产品开发、建立数据模型提升运营效率等。该类型分析师偏向产品和运营,可以转向做运营和产品。
2、数据分析师的理想行业在互联网,但条条大道通罗马,走合适你的路线。
从行业的角度来看:
1)互联网行业是数据分析应用最广的行业,其中的电商企业,更是目前最火的,而且企业也更重视数据分析的价值,是数据分析师理想的成长平台。
2)其次是咨询公司(比如专门的数据挖掘公司Teradata、尼尔森等市场研究公司),他们需要数据分析人才,而且相对来说,数据分析师在咨询公司成长的速度更快,专业也会更全面。
3)再次是金融行业,比如银行和证券等行业,该行业对数据分析的依赖需求,越来越大。
4)最后是电信行业(中国移动、联通和电信),它们拥有海量的数据,在严峻的竞争下,也越来越重视数据分析,但进入这些公司的门槛比较高。

回答3:

回答4:

数据都已经开始扮演越来越重要的“角色”。在这种大势之下,数据分析思维已经不只是数据分析师的“专业”了,包括销售、市场、运营、策划、产品等等前端的职位都需要通过数据分析来帮助自己的工作,甚至连后台的财务、法务、人事等也开始需要通过数据分析来提升效率。可以这么说,如果你在企业之中工作,你未来会开始越来越多的和数据打交道,这个时候数据分析已经成为工作的必要条件。

回答5:

从职位薪水来看,数据分析行业的高薪主要分布在长三角、珠三角和京津地区。北京、上海和深圳的薪水位列第一方阵,均薪在10k+;杭州、宁波和广州位列第二方阵,均薪在9k+;其他沿海及内陆区域中心城市,如南京、重庆、苏州、无锡等位于第三方阵,均薪在8k左右。
从职位量来看,北京、上海、深圳和广州位列第一方阵,职位量在30000+,杭州、成都、南京和天津位列第二方阵,职位量在20000+,武汉、西安、郑州等区域中心或省会城市对数据分析职位的需求也相对较高,职位量在10000+。
从行业需求来看,互联网金融、O2O、数据服务、教育、电子商务、文化娱乐领域对数据分析师需求量相比其他行业更大。
不管是在企业还是社会,数据都已经开始扮演越来越重要的“角色”。在这种大势之下,数据分析思维已经不只是数据分析师的“专业”了,包括销售、市场、运营、策划、产品等等前端的职位都需要通过数据分析来帮助自己的工作,甚至连后台的财务、法务、人事等也开始需要通过数据分析来提升效率。可以这么说,如果你在企业之中工作,你未来会开始越来越多的和数据打交道,这个时候数据分析已经成为工作的必要条件。
这里给大家举几个例子:
现在的产品,由于销售渠道开始开始网络化,所以基本上每个产品在做客群划分、竞品分析、销售预测等等工作时都必须基于数据来进行建模并分析。以前那样只要写写产品分析书,画画产品原型,做做产品交互的“好日子”已经过去了。这么说吧,越来越多的公司里,如果产品不能拿数据出来支撑自己的工作,是基本上获取不到什么资源的支持。
再拿运营来说,更加离不开数据了。大到做一个活动,目标人群如何划分,不同人群的方案是什么,预计投入多少产出多少,这些都需要数据支持;小到一个营销话术,也需要切分不通人群进行对照实验来决定。可以说,现在不依靠数据分析的运营已经越来越少。
最后再举一个后台部门的例子。现在的HR在做人力规划时,从人员结构分析到配置策略分析再到成本分析,无论哪一项都需要使用到数据。除了本公司的人力数据外,还需要业务数据,竞对公司数据乃至于整个行业数据。通过大量数据的分析,可以更加精确的制定公司的人力资源战略。