首先说指数函数,一般地,形如y=a^x(a>0且a≠1) (x∈R)的函数叫做指数函数,该函数总是通过定点(0,1),当a>1时,函数单调递增,若0
根据上述特点,可以采用特殊值来研究指数函数图象,这里特殊值取x=±1 (1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。 (2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。 再来说一下对数函数,一般地,函数y=loga x(a>0,且a≠1)叫做对数函数,该函数总是通过定点(1,0),当a>1时,函数单调递增,若0
根据上述特点,可以采用特殊值来研究对数函数图象,这里特殊值取y=±1 (1)由对数函数y=loga x与直线y=1相交于点(a,1)可知:在x轴上方,图像从左到右相应的底数由小变大。 (2)由对数函数y=loga x与直线y=-1相交于点(1/a,-1)可知:在x轴下方,图像从左到右相应的底数由大变小。
首先说指数函数,一般地,形如y=a^x(a>0且a≠1)
(x∈R)的函数叫做指数函数,该函数总是通过定点(0,1),当a>1时,函数单调递增,若0
根据上述特点,可以采用特殊值来研究指数函数图象,这里特殊值取x=±1
(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。
(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。
再来说一下对数函数,一般地,函数y=loga
x(a>0,且a≠1)叫做对数函数,该函数总是通过定点(1,0),当a>1时,函数单调递增,若0
根据上述特点,可以采用特殊值来研究对数函数图象,这里特殊值取y=±1
(1)由对数函数y=loga
x与直线y=1相交于点(a,1)可知:在x轴上方,图像从左到右相应的底数由小变大。
(2)由对数函数y=loga
x与直线y=-1相交于点(1/a,-1)可知:在x轴下方,图像从左到右相应的底数由大变小。
对数函数是在第一象限内由左到右,相应的底数由小到大。
当对数函数的底数大于0小于1时,函数图象过点(1,0),从左向右逐渐下降,从右向左逐渐逼近y轴;
当对数函数的底数大于1时,函数图象过点(1,0),从左向右逐渐上升,从右向左逐渐逼近y轴。
判断方法:作直线y=1,看它与对数函数图象交点的横坐标(就是对应的对数函数的底数)的大小。
对数函数的基本性质如下:
1、定义域为正实数集R+。
2、值域为实数集R。
3、当a>1时,y=logax是定义域R+上的单调增函数,当0
4、 y轴是对数函数y=logax的渐近线。 指数函数的基本性质如下: 1、定义域为实数集R。 2、值域为正实数集R+。
指数 a>1 a越大越靠近-X +Y轴
0对数 同理的事情咱们不说了哈
关键是要分段考虑
这些最好记熟,做题快啊