对称矩阵与实对称矩阵有什么区别

2024-11-01 15:21:04
推荐回答(5个)
回答1:

唯一的区别是对称矩阵里面的数可以是实数,而实对称矩阵里面的数都是实数。

对称矩阵只说明A^T=A,没说明矩阵中的元素是实数,矩阵中的元素不仅可以是实数,也可以是虚数,甚至元素本身就是一个矩阵或其它更一般的数学对象,实对称矩阵就说明了矩阵中的元素要是实数。


扩展资料:

实对称矩阵主要性质:

1.实对称矩阵A的不同特征值对应的特征向量是正交的。

2.实对称矩阵A的特征值都是实数,特征向量都是实向量。

3.n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。

4.若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。

参考资料:

实对称矩阵——百度百科

对称矩阵——百度百科

回答2:

唯一的区别是对称矩阵里面的数可以是实数,而实对称矩阵里面的数都是实数。

对称矩阵只说明A^T=A,没说明矩阵中的元素是实数,矩阵中的元素不仅可以是实数,也可以是虚数,甚至元素本身就是一个矩阵或其它更一般的数学对象,实对称矩阵就说明了矩阵中的元素要是实数。

扩展资料:

对称矩阵(Symmetric Matrices)是指元素以主对角线为对称轴对应相等的矩阵。 在线性代数中,对称矩阵是一个方形矩阵,其转置矩阵和自身相等。

1855年,埃米特(C.Hermite,1822-1901年)证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。后来,克莱伯施(A.Clebsch,1831-1872年)、布克海姆(A.Buchheim)等证明了对称矩阵的特征根性质。泰伯(H.Taber)引入矩阵的迹的概念并给出了一些有关的结论。

1、对于任何方形矩阵X,X+XT是对称矩阵。

2、A为方形矩阵是A为对称矩阵的必要条件。

3、对角矩阵都是对称矩阵。

4、两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。

5、用<,>表示上的内积。n×n的实矩阵A是对称的,当且仅当对于所有X, Y∈

6、任何方形矩阵X,如果它的元素属于一个特征值不为2的域(例如实数),可以用刚好一种方法写成一个对称矩阵和一个斜对称矩阵之和:

7、每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。

8、若对称矩阵A的每个元素均为实数,A是Hermite矩阵。

9、一个矩阵同时为对称矩阵及斜对称矩阵当且仅当所有元素都是零的时候成立。

10、如果A是对称矩阵,那么AXAT也是对称矩阵。

11、n阶实对称矩阵,是n维欧式空间V(R)的对称变换在单位正交基下所对应的矩阵。

把一个m×n矩阵的行,列互换得到的n×m矩阵,称为A的转置矩阵,记为A'或AT。

矩阵转置的运算律(即性质):

1.(A')'=A

2.(A+B)'=A'+B'

3.(kA)'=kA'(k为实数)

4.(AB)'=B'A'

若矩阵A满足条件A=A',则称A为对称矩阵。由定义知对称矩阵一定是方阵,而且位于主对角线对称位置上的元素必对应相等,即aij=aji对任意i,j都成立。

参考资料:对称矩阵-百度百科

回答3:

唯一的区别是对称矩阵里面的数可以是实数,而实对称矩阵里面的数都是实数。
对称矩阵只说明A^T=A,没说明矩阵中的元素是实数,矩阵中的元素不仅可以是实数,也可以是虚数,甚至元素本身就是一个矩阵或其它更一般的数学对象,实对称矩阵就说明了矩阵中的元素要是实数。

回答4:

对称矩阵只说明A^T=A
没说明矩阵中的元素是实数,矩阵中的元素不仅可以是实数,也可以是虚数,甚至元素本身就是一个矩阵或其它更一般的数学对象
实对称矩阵就说明了矩阵中的元素要是实数

回答5:

两者最主要的区别是实对称矩阵表示的是自伴算子,但复对称矩阵不是(Hermite矩阵表示自伴算子)
这一区别会在谱上体现:实对称矩阵和Hermite矩阵可对角化,且特征值是实数,但复对称矩阵的特征值可以是任何复数,也未必能对角化