a-b=3/5
b-c=3/5
相加:
a-c=6/5
(a-b)^2 = 9/25 = a^2+b^2-2ab
(b-c)^2 = 9/25 = b^2+c^2-2bc
(a-c)^2 = 36/25=a^2+c^2-2ac
上述三式相加:
54/25=2(a^2+b^2+c^2)-2(ab+bc+ca)
ab+bc+ca=-2/25
a=3/5+b
c=b-3/5
代入第二已知式得到:
(3/5+b)^2+b^2+(b-3/5)^2=1
即:
3b^2+18/25=1
b^2=7/75.
又因为:
(a+b+c)^2=a^2+b^2+c^2-2(ab+bc+ca)
所以:
ab+bc+ac=(1/2)[(a^2+b^2+c^2)-(a+b+c)^2]=(1/2)[1-(3/5+b+b+b-3/5)^2]
=(1/2)[1-9b^2]
=2/25
∵a-b=b-c=3/5
a-c=(a-b)+(b-c)=6/5
∴(a-b)²+(b-c)²+(a-c)²=9/25+9/25+36/25=54/25
=a²-2ab+b²+b²-2bc+c²+a²-2ac+c²
=2(a²+b²+c²)-2(ab+ac+bc)=54/25
∵a²+b²+c²=1
∴解得ab+ac+bc=-2/25