简单分析一下,答案如图所示
看看这题
解:由于(x^2-x+1)`=2x-1=2(x+1)-3
所以x+1=(1/2)[(2x-1)+3],故
∫[(x+1)/(x^2-x+1)]dx
=(1/2)∫[(2x-1)+3]dx/(x^2-x+1)
=(1/2)∫(2x-1)dx/(x^2-x+1)+(3/2)∫dx/(x^2-x+1)
=(1/2)∫(x^2-x+1)`dx/(x^2-x+1)+(3/2)∫dx/[(x-1/2)^2+3/4]
=(1/2)∫d(x^2-x+1)/(x^2-x+1)
+(3/2)∫d(x-1/2)/[(x-1/2)^2+(√3/2)^2]
=(1/2)ln|x^2-x+1|+[(3/2)/(√3/2)]arctan[(x-1/2)/(√3/2)]+C
=(1/2)ln(x^2-x+1)+√3arctan[(2x-1)/√3]+C
令x=sin(t),dx=cos(t)dt
原式=sin(t)cos(t)dt/(2-sin²(t))cos(t)
2-sin²(x)变为1+cos²(t),sin(t)放进微分,
有:-dcos(t)/1+cos²(t)
积分等于-arctan(cos(t))+C,
换元变量带回-arctan(cos(arcsin(x)))+C
用分步积分法 ∫x^2 e^(-x)dx=-∫x^2 d(e^(-x))=-x^2 e^(-x)+∫2x e^(-x) dx+c1 =-x^2 e^(-x)-∫2x d(e^(-x))+c1=-x^2 e^(-x)-2x e^(-x) +2∫e^(-x)dx+c2 =-x^2 e^(-x)-2x e^(-x) -2e^(-x)+c3 小宝空间欢迎来踩 http://hi.baidu.com/%cd%f5%d0%a1%b1%a6/