求解实对称分块三对角矩阵的本征值

2025-04-16 13:48:26
推荐回答(1个)
回答1:

这种结论显然是错的,即使是实对称矩阵也不可能有如此强的结论,况且你的叙述也很不清晰,完全没有讲清楚所谓的“变”是何种变换。
如果你不相信的话先给你一个反例
Hss=[1,2; 2,3], Hsp=[3,4], Hpp=6, Hpd=Hdd=0
如果把Hsp变成[0,5]而别的块不变,特征值肯定不同。

我猜测你试图从正交变换中总结一些性质。只能说Frobenius范数是酉不变范数,但是如果没有更多条件的话不要认为Frobenius范数是Hermite矩阵在酉变换下的全系不变量。

补充:
这次虽然你增加了很强的条件,但仍不足以推出结论,再给你个例子
N=1, Hss=1, Hpp=diag{2,2,2}, Hdd=diag{3,3,3,3,3}, Hsp=[1;0;0]
这些不变,而
Hpd=[0,0,0; 0,0,3; 0,4,0; 0,0,0; 0,0,0]

Hpd=[0,0,0; 0,0,5; 0,0,0; 0,0,0; 0,0,0]
得到的特征值不同。

你之所以产生这种猜测,跟你给的矩阵结构有一定关系。
A=diag{c_1*I_{k_1}, c_2*I_{k_2}, ..., c_n*I_{k_n}} + L + L'
这里L是相应的下三角块。
如果作用一个与之结构匹配的分块对角酉变换
Q=diag{Q_1, Q_2, ..., Q_n}
自然就有Q'AQ和A的特征值相同,并且Q'AQ的对角块和A相同。我也提过了,Frobenius范数是酉不变范数,L当中的每一块在此变换下变成Q_k'*L_k*Q_{k-1},所以其F-范数不变。
但是绝对不可能反过来说如果L中相应的块F-范数不变就一定保持特征值不变,完全没希望的。