设切点为(t,t³-3t)f'(x)=3x²-3,则切线方程为y=(3t²-3)(x-t)+t³-3t整理得y=(3t²-3)x-2t³把A(1,m)代入整理得:2t³-3t²+m+3=0 ①因为可作三条切线,所以①有三个解记g(t)=2t³-3t²+m+3则g'(t)=6t²-6t=6t(t-1)所以当t=0时,极大值g(0)=m+3,当t=1时,极小值g(1)=m+2要使g(t)有三个零点,只需m+3>0且m+2<0,解得-3