伟达定理 是什么? 公式怎么用?

2024-11-21 18:07:25
推荐回答(2个)
回答1:

AX2+BX+C=0

X1和X2为方程的两个跟
则X1+X2=-B/A
X1*X2=C/A

韦达定理应用中的一个技巧

在解有关一元二次方程整数根问题时,若将韦达定理与分解式αβ±(α+β)+1=(α±1)(β±1)结合起来,往往解法新颖、巧妙、别具一格.例说如下.

例1 已知p+q=198,求方程x2+px+q=0的整数根.

(’94祖冲之杯数学邀请赛试题)

解:设方程的两整数根为x1、x2,不妨设x1≤x2.由韦达定理,得

x1+x2=-p,x1x2=q.

于是x1x2-(x1+x2)=p+q=198,

即x1x2-x1-x2+1=199.

∴(x1-1)(x2-1)=199.

注意到x1-1、x2-1均为整数,

解得x1=2,x2=200;x1=-198,x2=0.

例2 已知关于x的方程x2-(12-m)x+m-1=0的两个根都是正整数,求m的值.

解:设方程的两个正整数根为x1、x2,且不妨设x1≤x2.由韦达定理得

x1+x2=12-m,x1x2=m-1.

于是x1x2+x1+x2=11,

即(x1+1)(x2+1)=12.

∵x1、x2为正整数,

解得x1=1,x2=5;x1=2,x2=3.

故有m=6或7.

例3 求实数k,使得方程kx2+(k+1)x+(k-1)=0的根都是整数.

解:若k=0,得x=1,即k=0符合要求.

若k≠0,设二次方程的两个整数根为x1、x2,由韦达定理得

∴x1x2-x1-x2=2,

(x1-1)(x2-1)=3.

因为x1-1、x2-1均为整数,所以

例4 已知二次函数y=-x2+px+q的图像与x轴交于(α,0)、(β,0)两点,且α>1>β,求证:p+q>1.

(’97四川省初中数学竞赛试题)

证明:由题意,可知方程-x2+px+q=0的两根为α、β.由韦达定理得

α+β=p,αβ=-q.

于是p+q=α+β-αβ,

=-(αβ-α-β+1)+1

=-(α-1)(β-1)+1>1(因α>1>β).

回答2:

根的判别式和韦达定理是实系数一元二次方程的重要基础知识,利用它们可进一步研究根的性质,也可以将一些表面上看不是一元二次方程的问题转化为一元二次方程来讨论.

1. 判别式的应用

例1 已知实数a、b、c、R、P满足条件PR>1,Pc+2b+Ra=0.求证:一元二次方程ax2+2bx+c=0必有实根.

证明 △=(2b)2-4ac.①若一元二次方程有实根,

必须证△≥0.由已知条件有2b=-(Pc+Ra),代入①,得

△ =(Pc+Ra)2-4ac

=(Pc)2+2PcRa+(Ra)2-4ac

=(Pc-Ra)2+4ac(PR-1).

∵(Pc-Ra)2≥0,又PR>1,a≠0,

(1)当ac≥0时,有△≥0;

(2)当ac<0时,有△=(2b)2-4ac>0.

(1)、(2)证明了△≥0,故方程ax2+2bx+c=0必有实数根.

http://www.cbe21.com/subject/maths/html/040401/2001_01/20010109_566.html这个网址上有更详细的答案和例题