1+1/(1+2)+1/(1+2+3)+……+1/(1+2+3+……+n)
=2/1×2 +2/2×3+2/3×4+......+2/n(n+1)
=2×[1/1×2 +1/2×3+1/3×4+......+1/n(n+1)]
=2×【1-1/2+1/2-1/3+1/3-1/4+.....+1/n-1/(n+1)】
=2×[1-1/(n+1)]
=2n/(n+1)
分母的通项是an=1+2+...+n=n(n+1)/2
所以1/an=2/n(n+1)=2[1/n-1/(n+1)]
所以1+1/(1+2)+1/(1+2+3)+...+1/(1+2+3+...+n)
=2(1-1/2)+2(1/2-1/3)+2(1/3-1/4)+...+2[1/n-1/(n+1)]
=2[1-1/2+1/2-1/3+1/3-1/4+...+1/n-1/(n+1)]
=2[1-1/(n+1)]
=2n/(n+1)
如果不懂,请追问,祝学习愉快!
1+2+3+...+n=n(n+1)/2
an=(1/1+2+3+...+n)=2/[n(n+1)]=2[1/n-1/(n+1)]
S=1+(1/1+2)+(1/1+2+3)+...+(1/1+2+3+...+n)
=2[1-1/2+1/2-1/3+...+1/n-1/(n+1)]
=2n/(n+1)